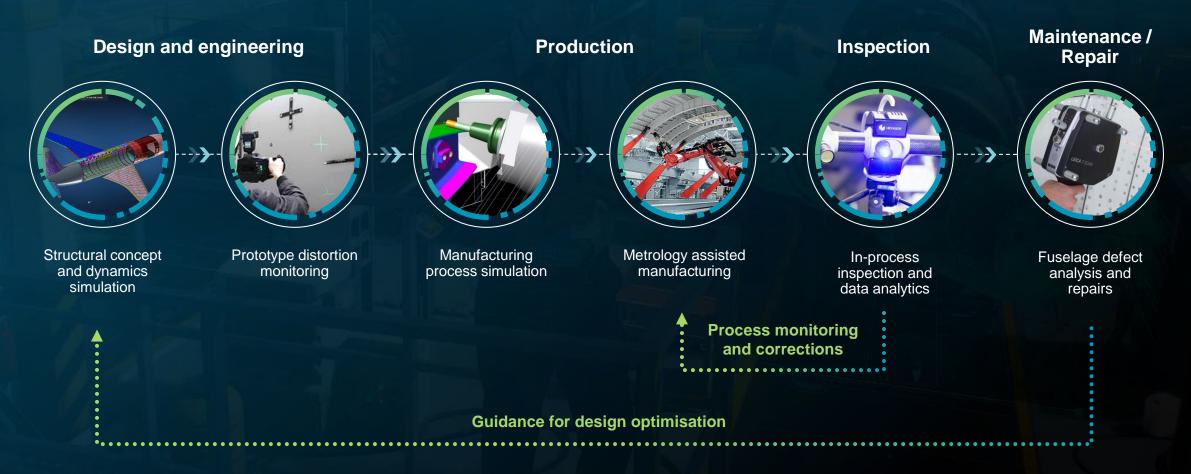
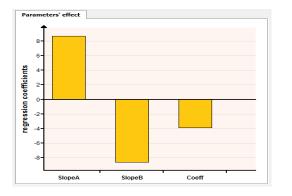


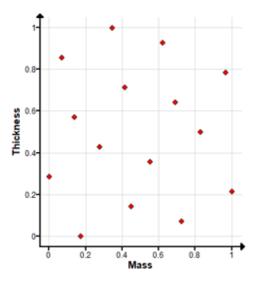
Hexagon: Innovation in our DNA


We are a global leader in sensor, software and autonomous solutions committed to empowering a sustainable autonomous future.

Hexagon: Putting Data to Work from Concept to Operation

Aerospace example




ODYSSEE Machine Learning

1-Project 2-Data 3-Sensitivity 4-Interpolation 5-Optimization 6-Animation User script

File Export Tools Preferences Help

- From available analysis, test results or measurements, predict responses for further data points
- ODYSSEE delivers the response in seconds
- Predict results values, curves and animations
- Improve parameters of manufacturing processes
- Input: csv files
- Can use images or step files instead of parameters
- Easy-to-use GUI
- Scripting possible
- Create and improve DOE
- Plot tool for correlation, PCA, heat map, etc.
- Optimization

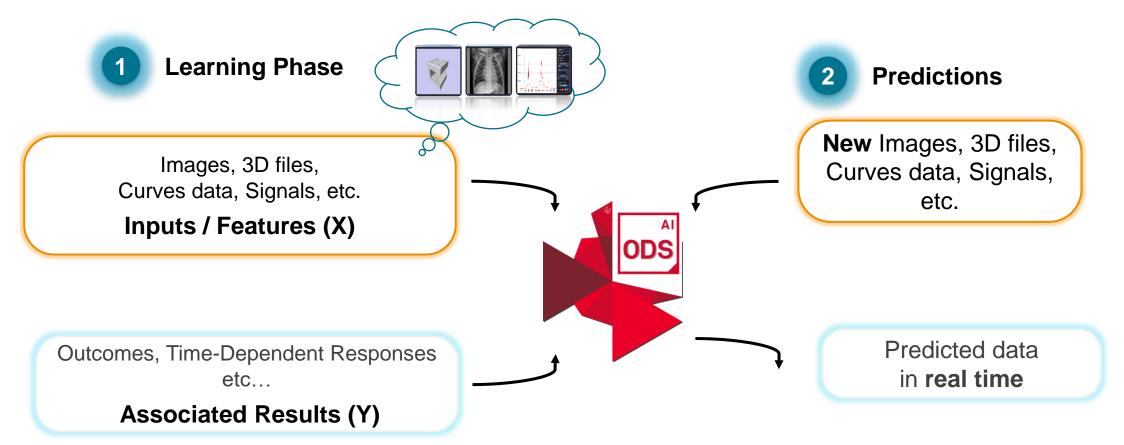
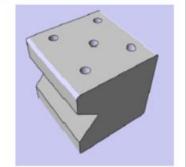
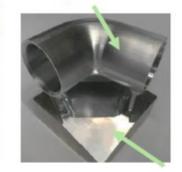


Image and Step File Based Machine Learning


Use of Past Experience to Predict New Outcomes

CNC QUOTE allows to predict a machining time using an existing learning database composed of :

- 3D models (File(step) type) where Complex indicators (λ) are calculated automatically
- Material tag (Tags type)
- Tapped holes number estimation per 3D part analyzed
- percent (%) of 3D part with a surface roughness Ra<=0.8
- percent (%) of 3D part with a surface roughness Ra at 1.6
- **percent (%)** of 3D part with a great accuracy machining (**small tolerance**)
- And the associated machining time.

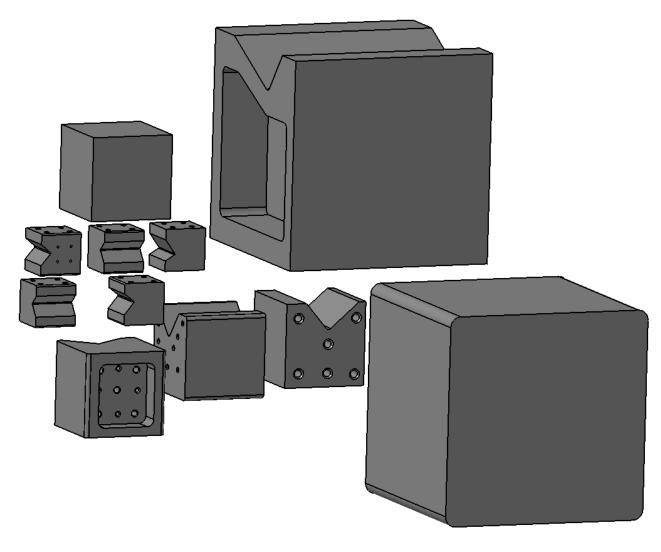

Tapped holes	0	1	2	3	4	5	10	 15	20	25	30	
number												

4.4	200	ria	10
1.11			_

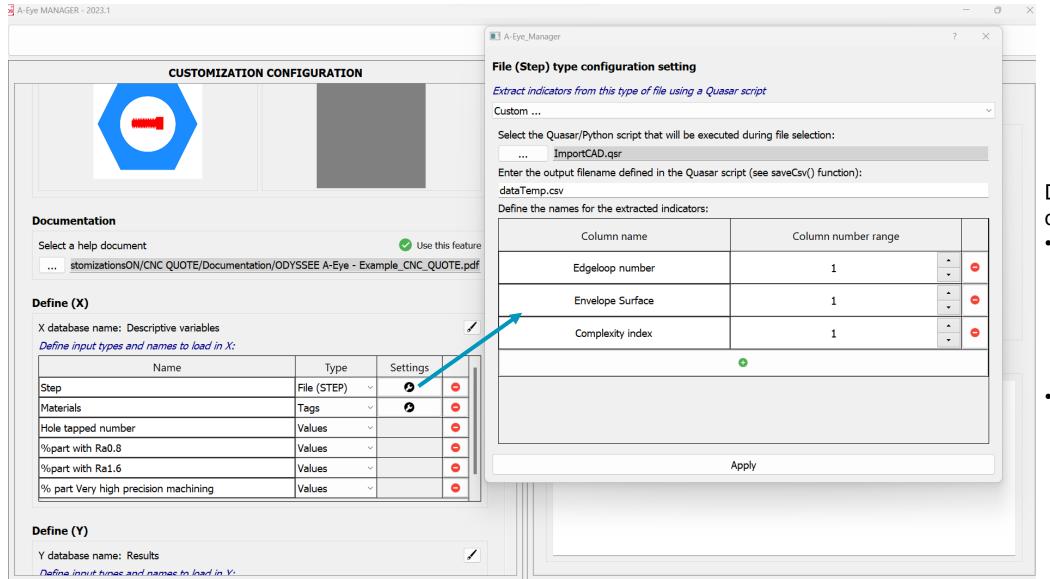
Alu2017 S235 2024T351 Titane

% Ra <=0.8	% Ra 1.6
0	0
25	25
50	50
75	75
100	100

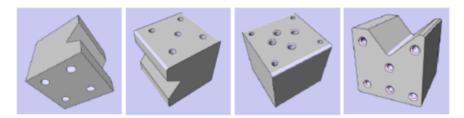
25%	Roug	gh	effect	=	Ra1.	6
-----	------	----	--------	---	------	---



% Great accuracy machining
0
25
50
75
100

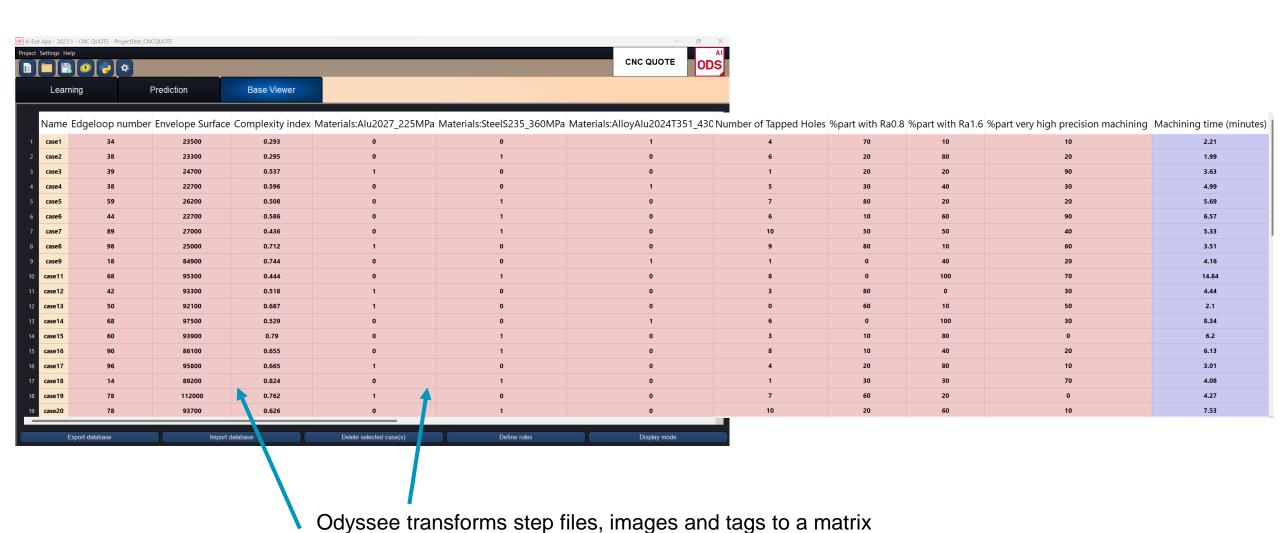

75% high precision machining

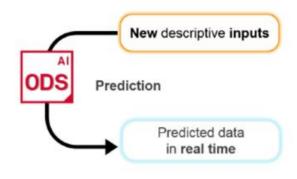
Some of the geometries, available as 3d step files

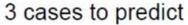


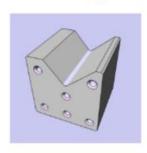
Define a customization:

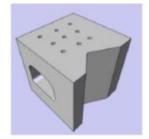
- Define the parameter format as files, images (not in this case), tags, or values
- Define how to interpret the step file

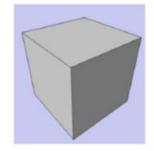

47 cases in database


CASE	S	Step	Materials	Number of Tapped Holes	%part wth Ra0.8	%part wth Ra1.6	%part very high precision machining	Machining time (
☐ CASE 1. ca	se1	3D	AlloyAlu2024T351_430MPa	4	70	10	10	2.21
□ CASE 2. ca	se2	3D)	SteelS235_360MPa	6	20	80	20	1.99
CASE 3. ca	se3	3D	Alu2027_225MPa	1	20	20	90	3.63
□ CASE 4. ca	se4	3D	AlloyAlu2024T351_430MPa	5	30	40	30	4.99
□ CASE 5. ca	se5	3D)	SteelS235_360MPa	7	80	20	20	5.69
□ CASE 6. ca	se6	3D	SteelS235_360MPa	6	10	60	90	6.57
□ CASE 7. ca	se7	3D)	SteelS235_360MPa	10	50	50	40	5.33
CASE 8. ca	se8	3D	Alu2027_225MPa	9	80	10	60	3.51
CASE 9. ca	se9	3D	AlloyAlu2024T351_430MPa	1	0	40	20	4.16
					X			Υ


Note: The X database is constituted of: 3D file, material tag, number of tapped holes, % part at Ra0.8, % part at Ra1.6, % part at high precision machining.

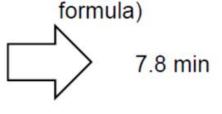




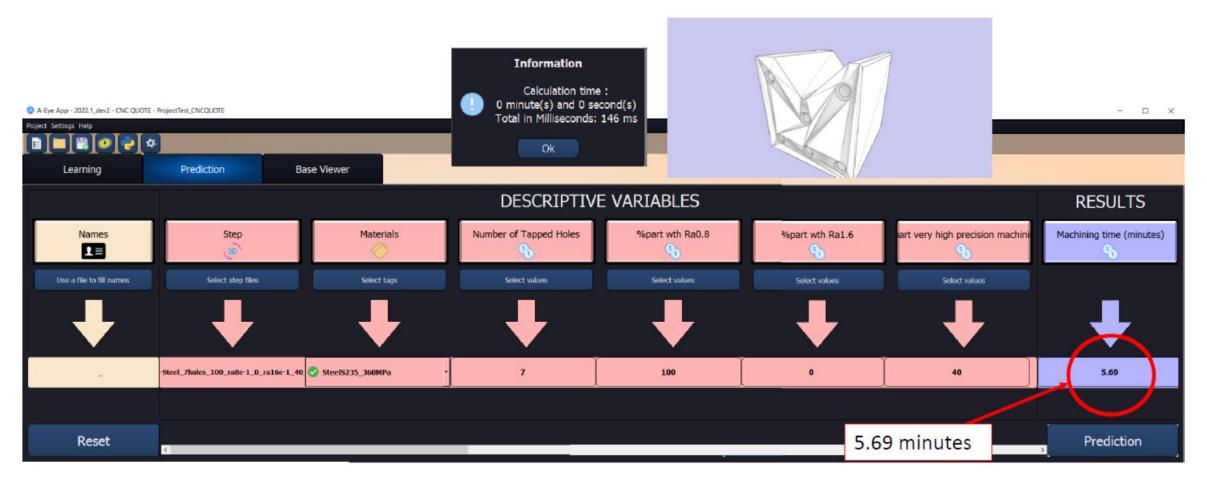

Material: Steel (σ_f=225MPa)
Surface: 91403mm2 (L=120mm)
7 tapped holes
100% 3D part with Ra0.8
40% 3D part with high accuracy r

40% 3D part with high accuracy machining

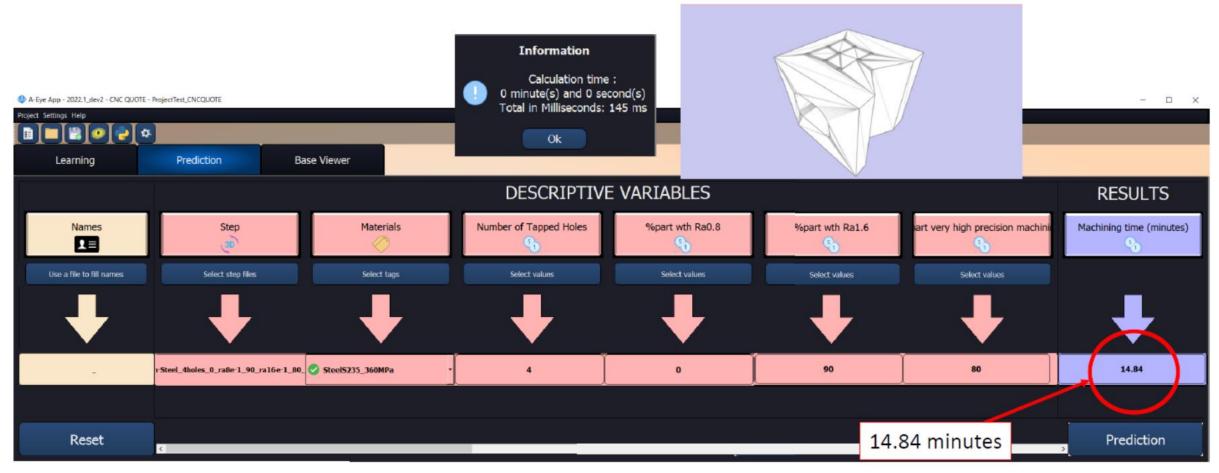
Material: Steel (σ_f=225MPa)
Surface: 618935 mm2 (L=300mm)
4 tapped holes
90% 3D part with Ra1.6

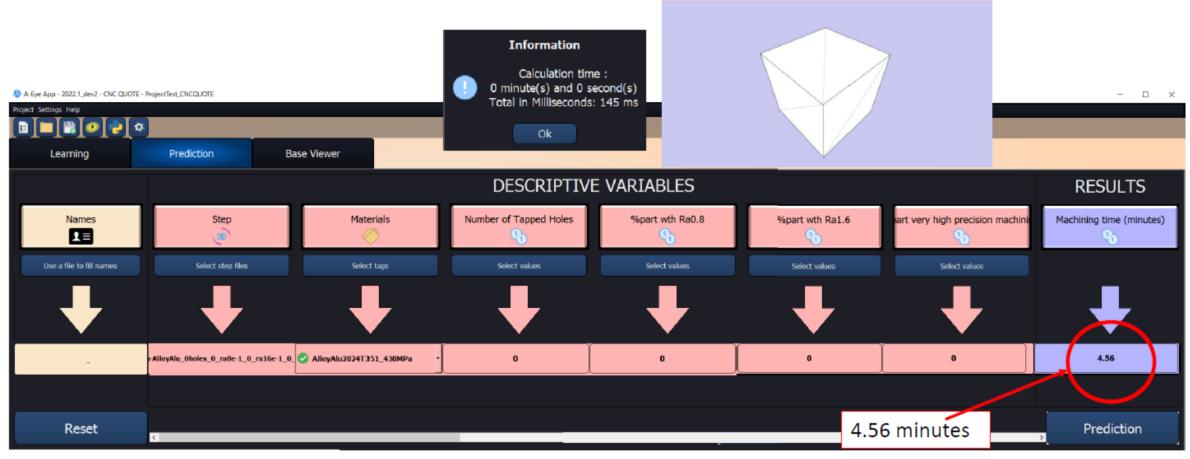

80% 3D part with high accuracy machining

Material: Aluminum Alloy (σ_f =420MPa) Surface: 540000mm2 (L=300mm) 0 tapped holes 100% 3D part with Ra3.2 100% 3D part with traditional accuracy


17 min

Expected time (empirical




vs 7.8 min

vs 17 min

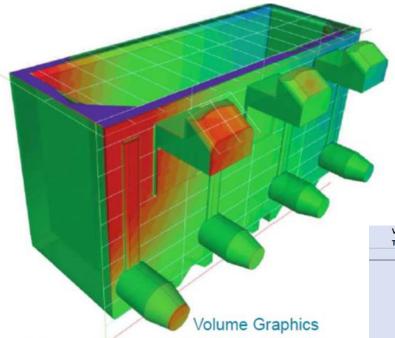
vs 3.8 min

Real-Time Product Quality Inspection

Classify "valid" or "defect"

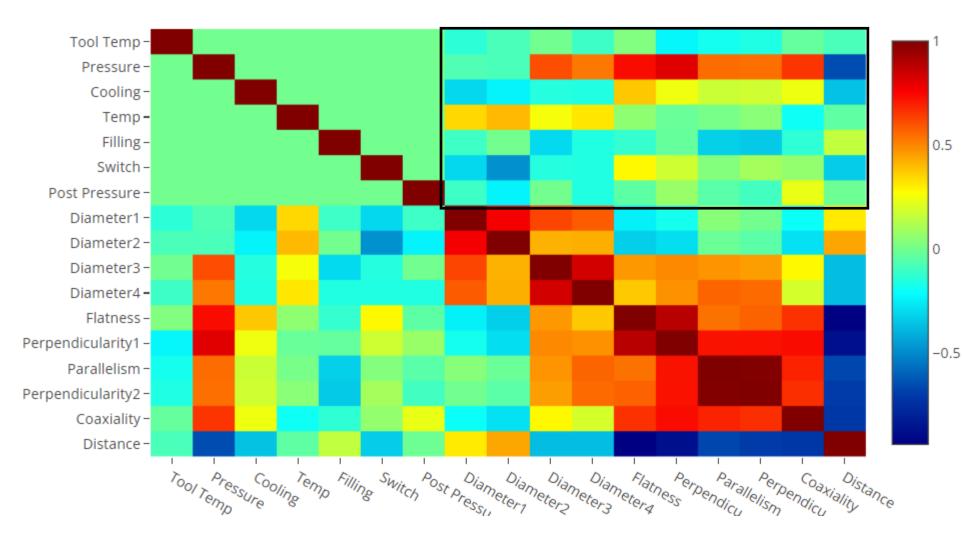
Example of valid parts:

Example of defect parts:



Optimize Manufacturing Process: Minimize Deviations in Injection Molding

Color-coded visualization of deviations of the manufactured part from the target


Find optimum values of the process parameters (blue) to reach optimum measurement results (green).

Ideally, these parameters are later used in the injection molding process and then get comparable measurement results.

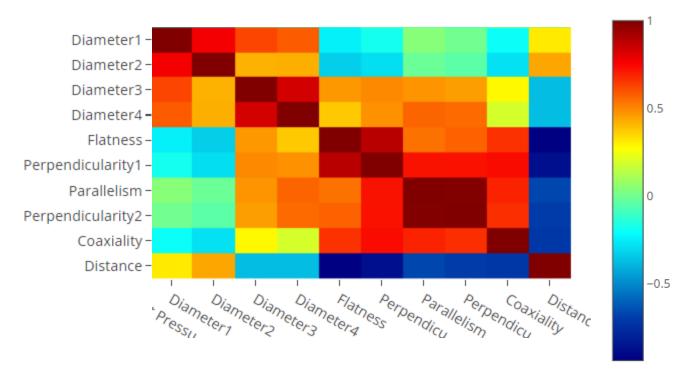
Variable 1:	Variable 2:	Variable 3:	Variable 4:	Variable 5:	Variable 6:	Variable 7:	Dim 1	Dim 2	Dim 3	Dim 4	Dim 5	Dim 6	Dim 7	Dim 8	Dim 9	Dim 10
Tool Temp	Pressure	Cooling	Temp	Filling	Switch	Post Pressure	Diameter	Diameter	Diameter	Diameter	Flatness	Perpendicularity	Parallelism	Perpendicularity	Coaxiality	Distance
°C	Normiert	s	°C	s	%	Normiert	5.00	5.00	5.00	3.00	0.00	0.00	0.00	0.00	0.00	68.00
20	-1	15	230	0.3	96	-1	4.90	4.90	4.90	2.89	0.12	0.05	0.54	0.26	1.94	67.80
20	-1	25	230	0.7	100	1	4.88	4.88	4.88	2.88	0.44	0.52	0.39	0.19	4.28	67.15
20	1	15	270	0.3	100	1	4.90	4.89	4.92	2.90	0.59	0.93	0.90	0.45	3.93	66.86
20	1	25	270	0.7	96	-1	4.90	4.90	4.91	2.90	0.60	0.90	0.78	0.38	2.85	67.02
60	-1	15	270	0.7	96	1	4.90	4.90	4.90	2.89	0.07	0.08	0.32	0.15	1.08	67.72
60	-1	25	270	0.3	100	-1	4.89	4.89	4.90	2.89	0.60	0.46	0.81	0.45	2.30	66.74
60	1	15	230	0.7	100	-1	4.89	4.89	4.90	2.89	0.49	0.55	0.44	0.24	3.80	67.13
60	1	25	230	0.3	96	1	4.89	4.89	4.91	2.89	0.60	0.72	0.79	0.38	7.00	66.91
20	-1	20	230	0.5	98	0	4.88	4.88	4.88	2.88	0.18	0.27	0.22	0.12	0.30	67.66
60	-1	20	230	0.5	98	0	4.90	4.89	4.90	2.89	0.16	0.05	0.18	0.08	0.78	67.60
20	1	20	230	0.5	98	0	4.90	4.89	4.92	2.90	0.59	0.93	0.90	0.45	3.93	66.86
60	1	20	230	0.5	98	0	4.89	4.89	4.91	2.89	0.56	0.63	0.62	0.30	3.01	67.06
20	-1	20	270	0.5	98	0	4.91	4.90	4.91	2.89	0.14	0.11	0.36	0.18	0.94	67.81
60	-1	20	270	0.5	98	0	4.90	4.89	4.90	2.89	0.36	0.08	0.15	0.08	1.36	67.36
20	1	20	270	0.5	98	0	4.89	4.89	4.90	2.89	0.49	0.55	0.44	0.24	3.80	67.13
60	1	20	270	0.5	98	0	4.89	4.89	4.91	2.89	0.52	0.54	0.42	0.23	2.06	67.19
40	0	20	230	0.5	98	0	4.90	4.89	4.91	2.89	0.47	0.39	0.22	0.11	1.66	67.38
40	0	20	270	0.5	98	0	4.90	4.90	4.91	2.89	0.45	0.34	0.16	0.08	1.43	67.45
40	-1	20	250	0.5	98	0	4.90	4.90	4.90	2.89	0.12	0.04	0.38	0.19	1.03	67.80
40	1	20	250	0.5	98	0	4.90	4.89	4.91	2.89	0.60	0.84	0.83	0.40	6.89	66.92
20	0	20	250	0.5	98	0	4.90	4.90	4.91	2.89	0.52	0.55	0.32	0.16	2.05	67.34
60	0	20	250	0.5	98	0	4.89	4.89	4.90	2.89	0.42	0.26	0.20	0.11	1.69	67.35
40	0	20	250	0.5	98	0	4.90	4.90	4.90	2.89	0.12	0.05	0.54	0.26	1.94	67.80

Optimize Manufacturing Process: Correlation Plot

Influence of the parameters on the results. Tool temp, filling, switch and post pressure have a low correlation with most results.

1: 100% correlated

0: not correlated


-1: 100% negative correlation

Optimize Manufacturing Process: Optimization – Objective

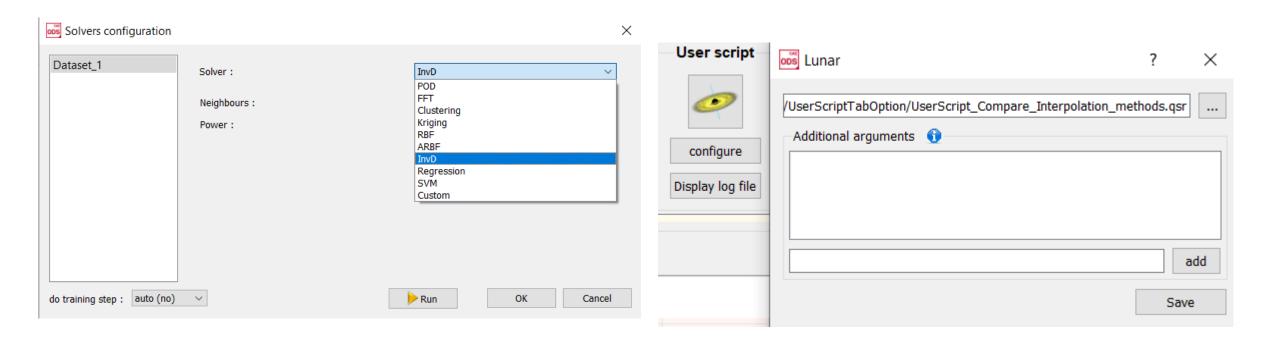
Try to get close to the target values; or maximize / minimize values. Both methods perform very similar.

Dim 1	Dim 2	Dim 3	Dim 4	Dim 5	Dim 6	Dim 7	Dim 8	Dim 9	Dim 10
Diameter	Diameter	Diameter	Diameter	Flatness	Perpendicularity	Parallelism	Perpendicularity	Coaxiality	Distance
5.00	5.00	5.00	3.00	0.00	0.00	0.00	0.00	0.00	68.00
max.	max.	max.	max.	min.	min.	min.	min.	min.	max.

Tradeoff:

Flatness, Perpendicularity, Parallelism, Coaxiality increase with Diameter 3 and 4 (go in the same direction)

But Flatness, Perpendicularity, Parallelism, Coaxiality should be minimized, while Diameter 3 and 4 should be maximized



Optimize Manufacturing Process: Find the Best Interpolation Method

Omitted some data points (7, 23) from the learning base and predicted them

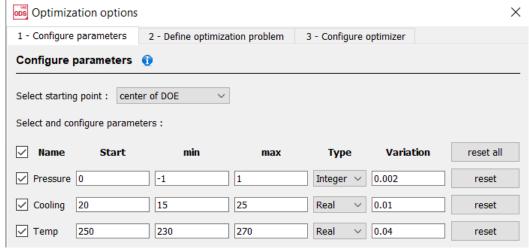
A script runs all methods automatically and finds the one with the best accuracy. Here:

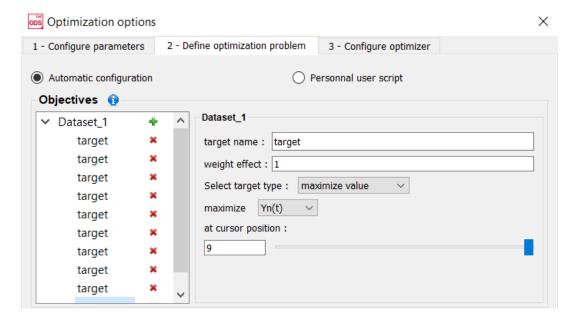
The best method found for Dataset_1 CLUSTER_1 is: InvD 3neighbours power=1.5, with a L2norm= 0.154009.

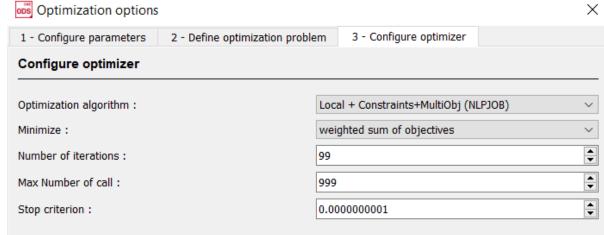
Optimize Manufacturing Process:Reduce Parameters

essure	Cooling	Temp	Pressure	Cooling	Temp										
-1	15	230	-1	. 15	230	4.9	4.9	4.9	2.89	0.12	0.05	0.54	0.26	1.94	
-1	25	230	-1	. 25	230	4.88	4.88	4.88	2.88	0.44	0.52	0.39	0.19	4.28	
1	15	270	1	. 15	270	4.9	4.89	4.92	2.9	0.59	0.93	0.9	0.45	3.93	
1	25	270	1	. 25	270	4.9	4.9	4.91	2.9	0.6	0.9	0.78	0.38	2.85	
-1	15	270	1	. 15	270	4.9	4.9	4.9	2.89	0.07	0.08	0.32	0.15	1.08	
-1	25	270	1	. 25	270	4.89	4.89	4.9	2.89	0.6	0.46	0.81	0.45	2.3	
1	15	230	1	. 15	230	4.89	4.89	4.9	2.89	0.49	0.55	0.44	0.24	3.8	
1	25	230	1	. 25	230	4.89	4.89	4.91	2.89	0.6	0.72	0.79	0.38	7	
-1	20	230	-1	. 20	230	4.89	4.885	4.89	2.885	0.17	0.16	0.2	0.1	0.54	
-1			1	. 20	230	4.895	4.89	4.915	2.895	0.575	0.78	0.76	0.375	3.47	
1			-1	. 20	270	4.905	4.895	4.905	2.89	0.25	0.095	0.255	0.13	1.15	
1			1	. 20	270	4.89	4.89	4.905	2.89	0.505	0.545	0.43	0.235	2.93	
-1			0	20	230	4.9	4.89	4.91	2.89	0.47	0.39	0.22	0.11	1.66	
-1			0	20	270	4.9	4.9	4.91	2.89	0.45	0.34	0.16	0.08	1.43	
1			1	. 20	250	4.9	4.9	4.9	2.89	0.12	0.04	0.38	0.19	1.03	
1			1	. 20	250	4.9	4.89	4.91	2.89	0.6	0.84	0.83	0.4	6.89	
0			0	20	250	4.896667	4.896667	4.903333	2.89	0.353333	0.286667	0.353333	0.176667	1.893333	67
0															
-1															
1	-														
0															
_															
0	20	250													

Kept only the 3 parametes with the highest influence.


Then there are duplicate parameter sets with different results for same parameter combination. These results are averaged.




20

250

Optimize Manufacturing Process: Optimization Setup

Optimize Manufacturing Process: Optimization Result

Questions?

