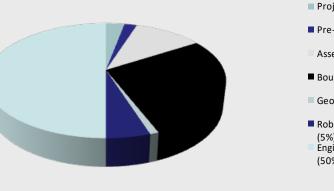
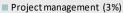


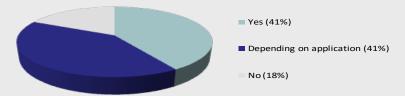
<AutomationML/>

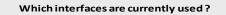

Starting points

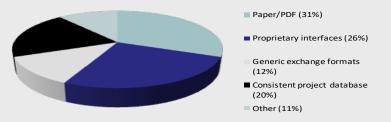

AutomationML/> The Glue for Seamless Automation Engineering

 A significant cost factor of industrial production systems is the engineering process.

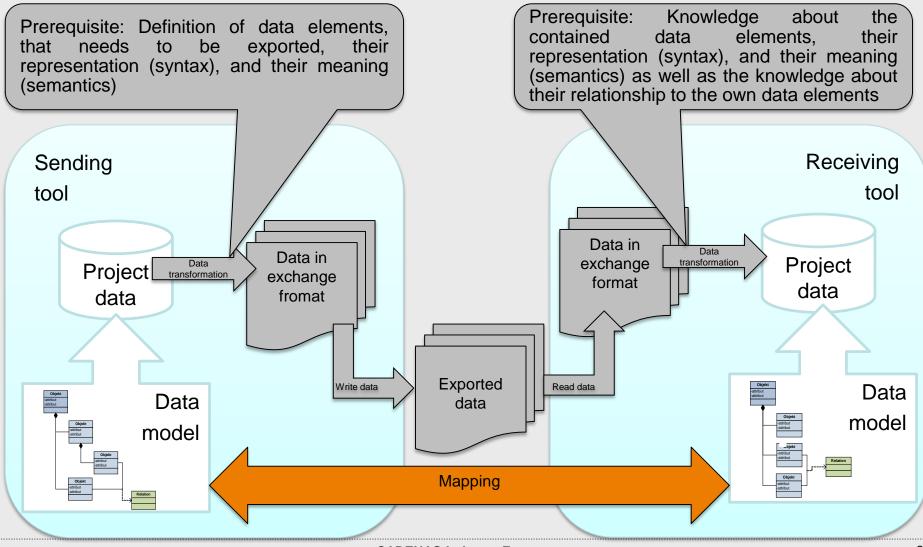
A survey revealed:


- That 82% of the interviewed experts say that redundancy on planning steps exits.
- That the pdf/paper interface is the most widespread interface with 31%.
- That only 12% of the interviewed experts use standardized interfaces.

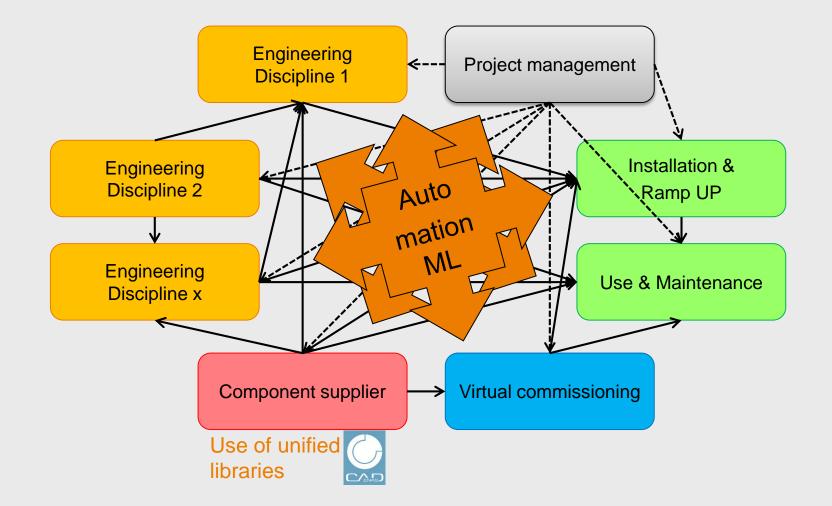


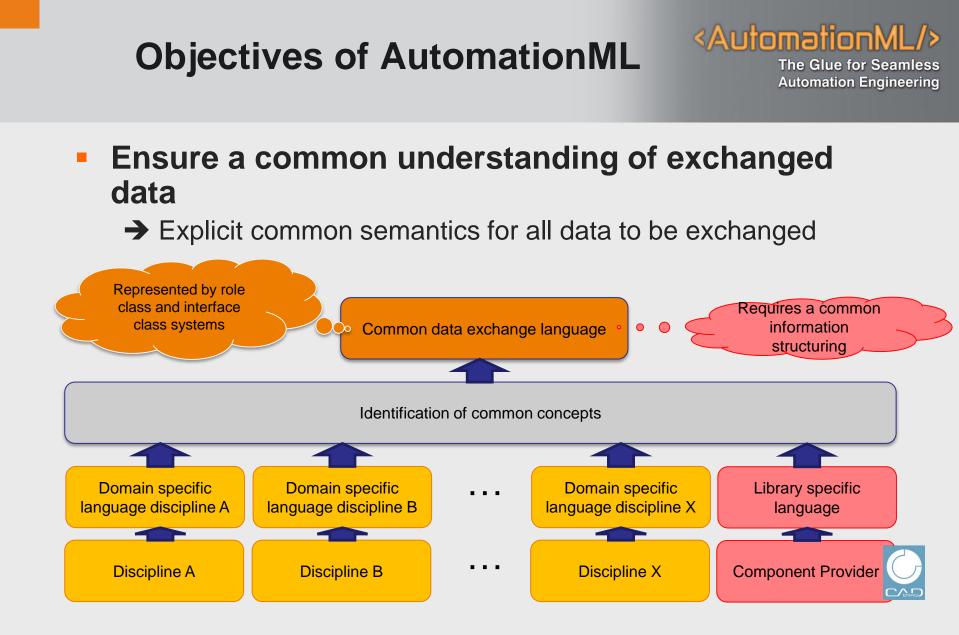


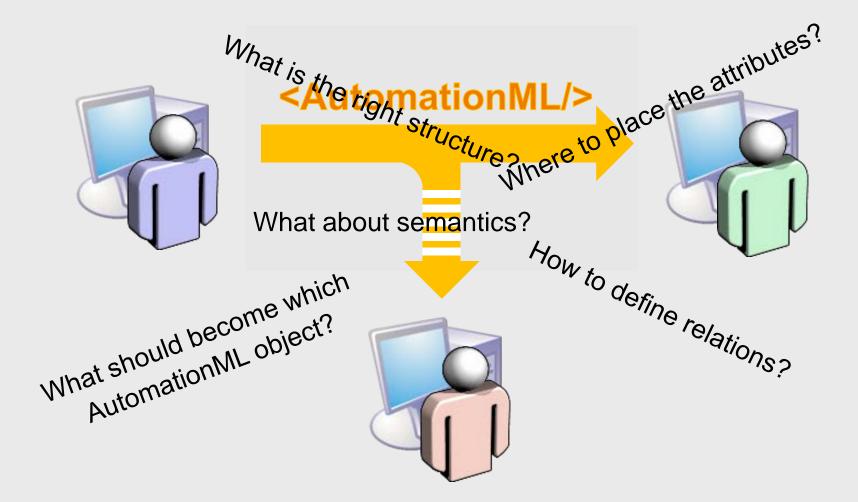
- Pre-commissioning (2%)
- Assembly (11%)
- Bought-in parts (28%)
- Geometry simulation (1%)
- Robot programming offline/online
 (5%)
 Engineering line
 Commissioning
- Engineering [incl. Commissioning] (50%) Source: AIDA 2005

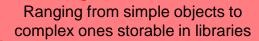


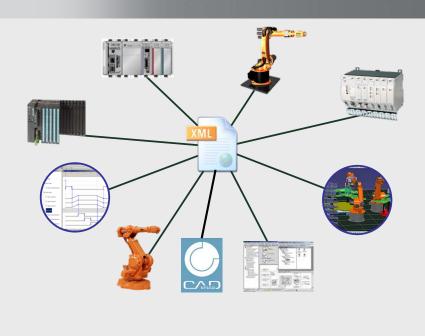
Data exchange problem

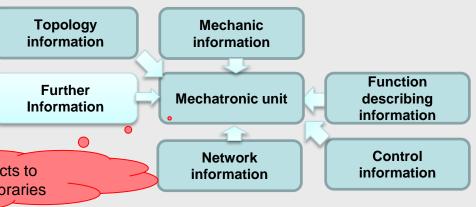

<AutomationML/>


The Glue for Seamless Automation Engineering

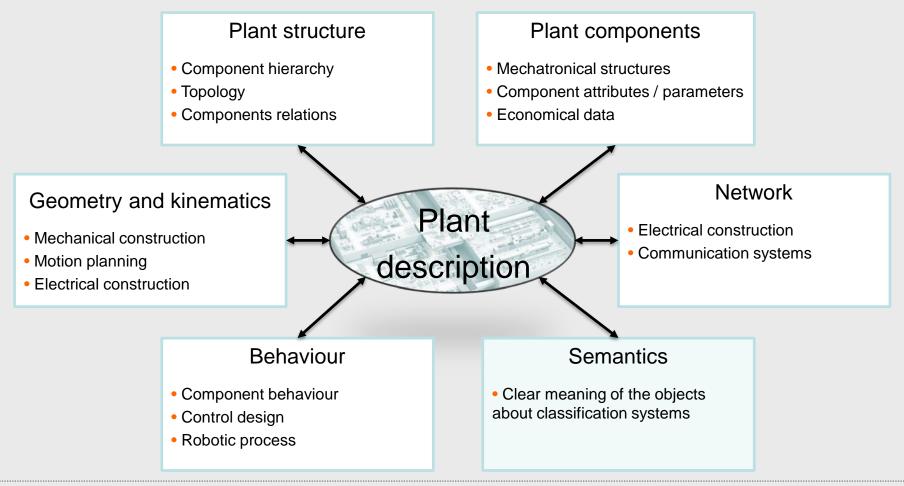

08.03.2018



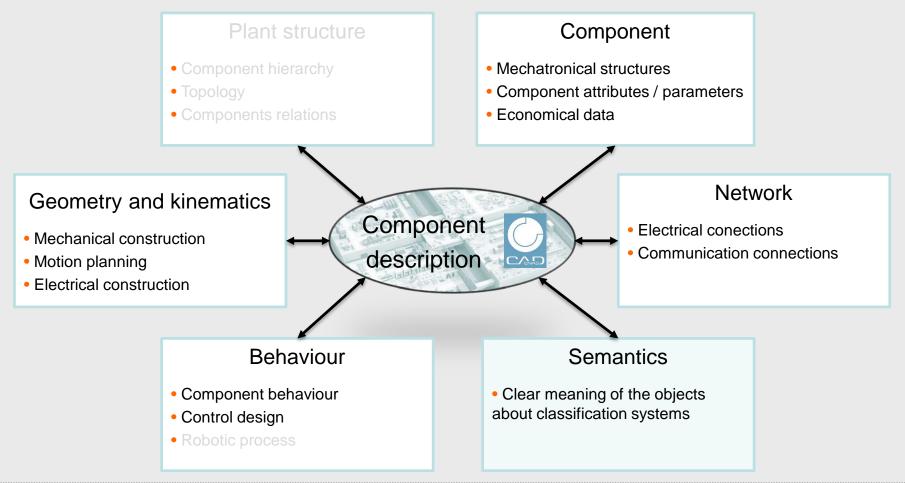

The Glue for Seamless Automation Engineering


<AutomationML

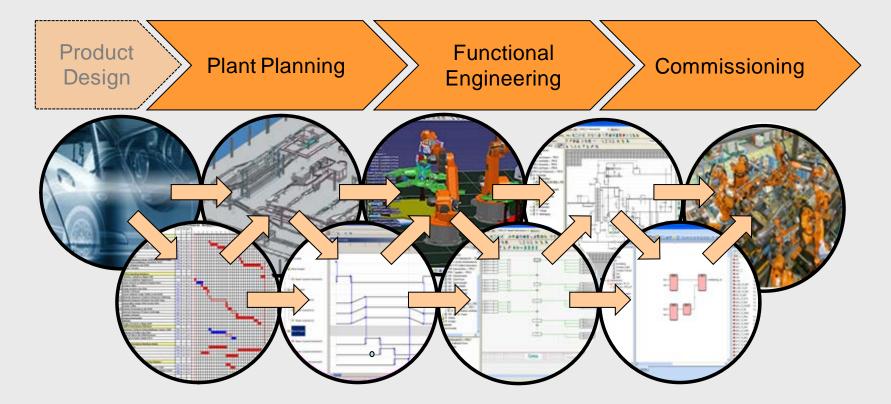
- AutomationML allows a consistent data exchange among and across different tool chains.
- AutomationML is an XML based human readable data format.
- It is an international standard and free of charge.
- It allows the integration of the world of tools into the digital factory of the future.

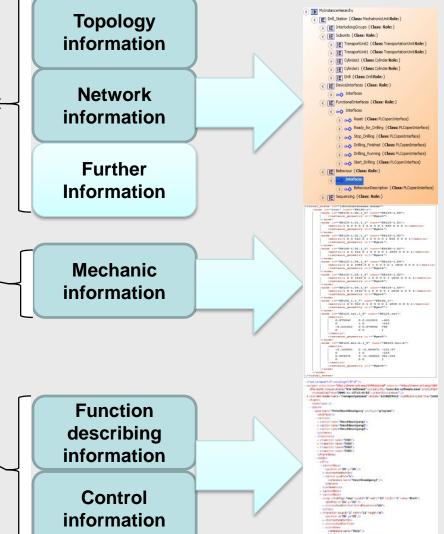


The Glue for Seamless Automation Engineering

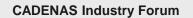

Which data contents are covered by AutomationML?

The Glue for Seamless Automation Engineering


Which component related data contents are covered?


The Glue for Seamless Automation Engineering

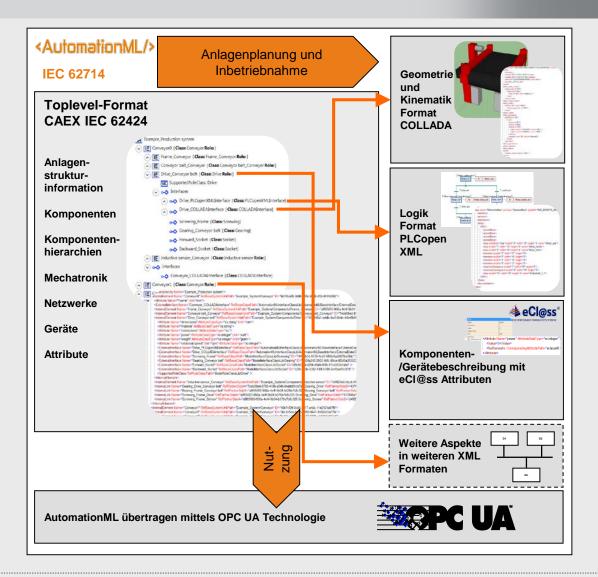
Where can AutomationML be used?


AutomationML combines

- CAEX (IEC 62424) to describe system hierarchies as well as attributes for system elements and devices
- COLLADA (Standard of KHRONOS Group) to describe geometry und kinematic
 information
- PLCopen XML (Standard of PLCopen for modelling of IEC 61131 projects) for behavior information modelling

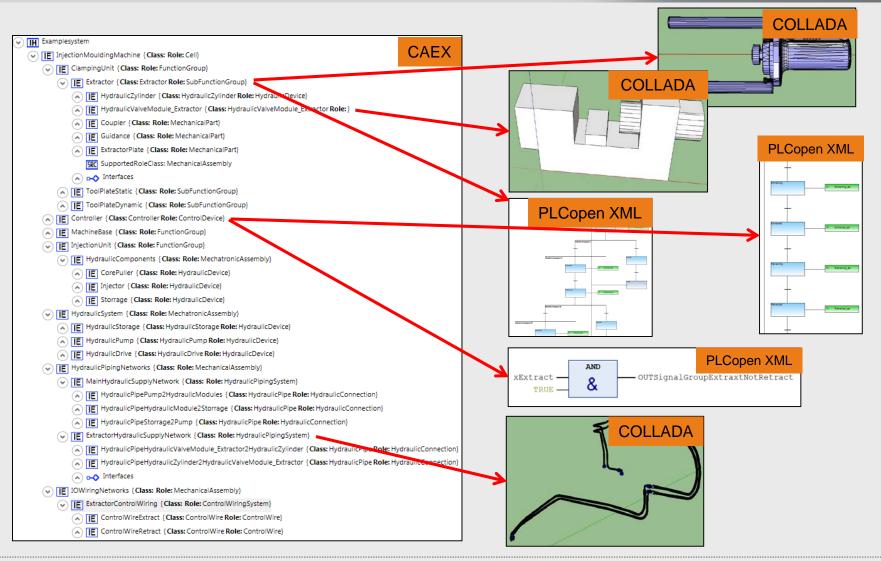
<AutomationML/>

The Glue for Seamless Automation Engineering



The AutomationML – architecture

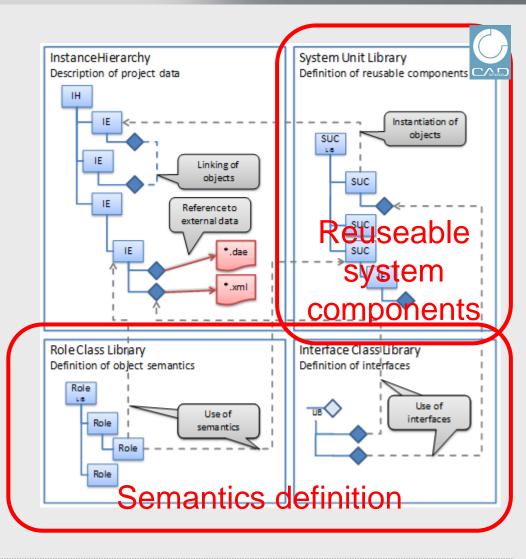
08.03.2018


The AutomationML – architecture

<AutomationML/>

The AutomationML – architecture

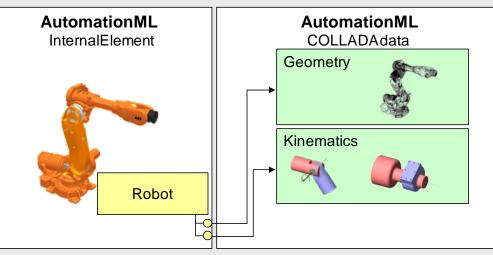
<AutomationML/>

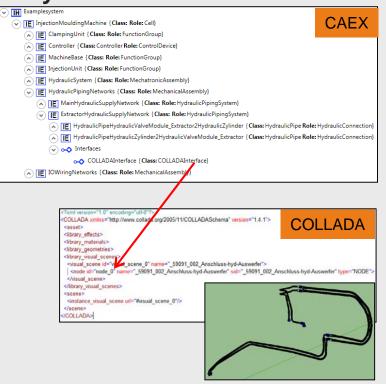


Topology description with CAEX

The Glue for Seamless Automation Engineering

<AutomationML

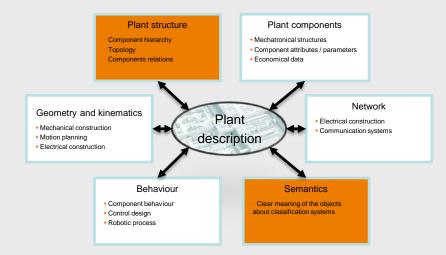

- Definition of meaning of objects by role classes
- Definition of reusable objects for the engineering
 - Components
 - Interfaces
 - Roles
- Representation of project data as project tree
- Integration of object descriptions as attributes
- Relations between objects and references to external documents



Geometry and kinematics description with COLLADA

<AutomationML/>

- OpenXML based 3D graphics format including geometry AND kinematics (sinceV1.5) as only file format that enables that
- Also used by Google Earth/Sketch Up, Game Engines
- COLLADA is standardized as ISO/PAS 17506 by KHRONOS
- Originally developed for gaming industry.
 - Main driver: Sony

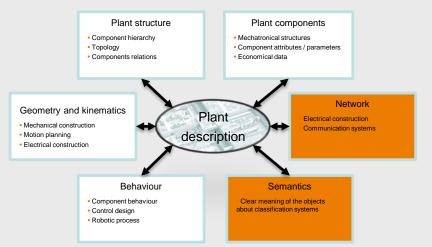

Application examples

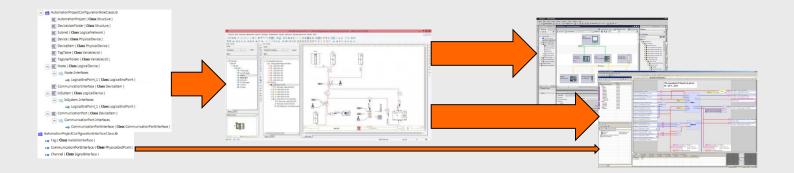
<AutomationML/>

The Glue for Seamless Automation Engineering

Exchange of plant structures

- CAD structures of transport systems
 - Example tool chain: AutoCAD (Autodesk) → taraVRbuilder (tarakos) → PlantSimulation (Siemens)
 - Precondition: transport system role library


Application examples


<AutomationML/>

The Glue for Seamless Automation Engineering

Exchange of network structures

- Device and wiring structure within automation systems
 - Example tool chain: EPlan Electric (Eplan) → TIA Portal (Siemens)/ logi.CAD (logi.cals)
 - Precondition: Automation system hardware configuration role class system

Application example

<AutomationML/>

The Glue for Seamless Automation Engineering

Exchange of kinematics

- Structure, geometry und kinematics data for virtual commissioning
 - Example tool chain: Process simulate (Siemens), Delmia (Dassault), NX MCD (Siemens) → RF::Suite (EKS Intec)
 - Preconditions: virtual commissioning related role class systems, COLLADA

Plant structure Plant components Component hierarchy Mechatronical structures Topology Component attributes / parameters · Components relations Economical data Network Geometry and kinematics Plant Electrical construction Mechanical construction Communication systems Motion planning description Electrical construction Behaviour Semantics · Clear meaning of the objects · Component behaviour Control design about classification systems Robotic process Assistent Material und RF::MAX Projektverwaltung Visualisieru Kinematik Elektrik & Peripherie Roboterverhalten Materialverwalt RF::Suite 1 Schnittatelle Scholtstelle 7.0 **WinMOD** RF::RobSim RF::SGView Peripheriesimulation 3D-Visualisierung von Anlagen Debugger für Roboterprogramme Virtuelle Anlage

III EvampleInstanceHierarchy
 III SCARA Rohot (Class: Role:Rohot)
 III PublishedDeseFrame (Class: Role:PATI | FR)

(v) ₀ √ Interfaces

v v Interfaces

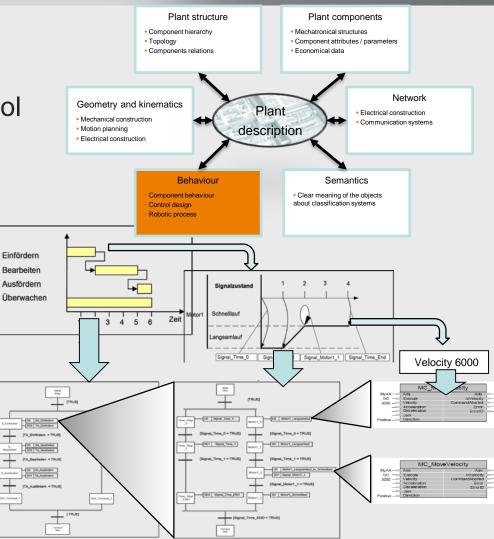
🕡 📢 Interfaces

↔ FileLinkImplicit {Class: PATH_CI}

→ FileLinkImplicit {Class: PATH_CI}

(v) IE PublishedFlangeFrame {Class: Role: PATH_FR)

⊶ FileLinkExplicit {Class: PATH_CI}

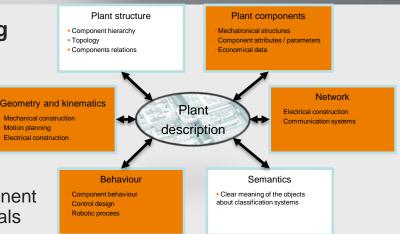

Application example

<AutomationML/> The Glue for Seamless

Automation Engineering

Setup of control projects

- Model based engineering of positive behavior within control application
 - Example tool chain: logi.CAD (logi.cals)
 - Proconditions: control related role class systems, PLCopen XML


Application example

<AutomationML/>

The Glue for Seamless Automation Engineering

Support of automation and process engineering with intelligent parts from component libraries

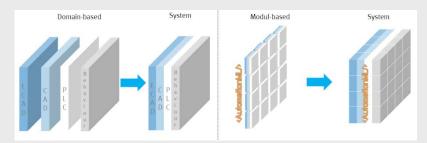
- CENIT FASTSUITE Edition 2
- Scalable solution with respect to level of information from component manufacturer
- Already available is download of Collada files from CADENAS with geometry and kinematics import
- Will be extended after release of BPR AML Component covering mechanical and electrical adapter, I/O signals and behavior
- Components can directly be used to setup a mechatronical simulation model for OLP and PLC validation purpose in Fastsuite E2

CADENAS https://b2b.partcommunity.com

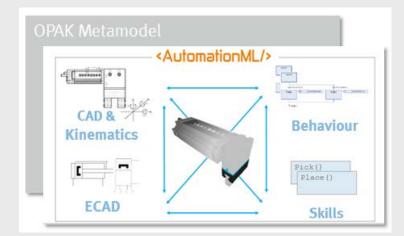
UNITY 3D CAD KATALOGI	PDF KATALOGE 3D SHARE	
CAD Kataloge		
R 🗣 🛛 🗜	Q. Januar	Suchan
(8
re Kesnege Kataloge	28 Ergebrisse werden angezeigt	Bettere Ergebritste anatgen
BK (Nabeya Bi-tech *	20MgR 20MgR 20mgr Group 1602201	
e einen neuen Katalog an striebstechnik (1)	2000 Seriel 193000 - Elisael Backen Zimmer Corao Istazioni	6
chitektur (3) domation (1) stienteil (1)	VBM We High Protocolishest Harms- und Bremselement mit Federenergiespeicher - 2000000 Elementemente VBM With Publicity Bitch Xaluta) 2102 2010 2102 2010	C Connecter
maiter (1) mcNieg (1) chtungszechnik (1)	Sheep 🔐 Socie (65000 - 3 Backen-Zentrischgreifer Zimmer Coup Instation	e
elhechnik (1) indhabungstechnik (1) isoungstechnik (1)	2000 Serie Gestebol Do Link - Graßbudgrolfer elektrisch ID-Link, dummy Zimmer Group Ison zeri	C transier
estrechnik (1) smitel (1) Nauch (1)	Sharp 10 SERIE Genetics - Grafter - Graft street - Graft street	C connect
nsorik (1)	zbase Serie GP55000L - 2-Backen-Parallelgreifer Zemmer Group	Q Terrent

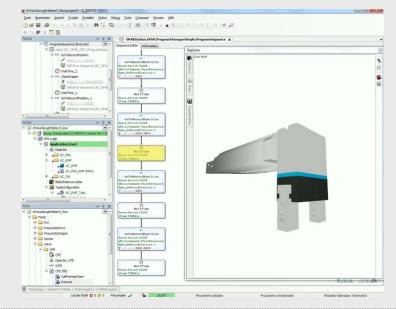
CENIT Fastsuite Edition 2

CADENAS Industry Forum


-*i*-

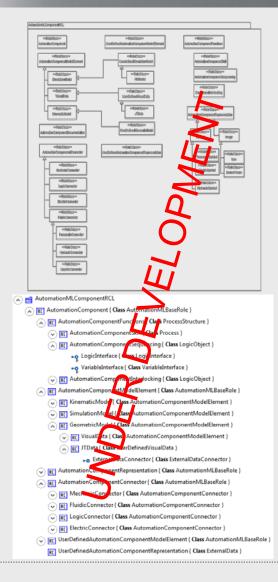
Important support structure




The Glue for Seamless Automation Engineering

- An very important building block for the extensive use of AutomationML are component libraries
- Example OPAC Project

 How can a plant component be modelled by AutomationML?


Important support structure

<AutomationML/>

The Glue for Seamless Automation Engineering

Development of component modelling approach

- Defines Role Class Lib for AutomationML Component
 - Basic Role Class AutomationComponent
 - Defines basic attributes
 - Identification of elements as "AutomationML automation component"
 - Further Role Classes (examples)
 - AutomationComponentDocumentation integration of external documentations in different file formats, e.g. PDF
 - AutomationModelElement integration of addition models like simulation, 3D or kinematic models
 - AutomationComponentConnector definition of different connector, e.g. electric, pneumatic ... are possible

Important support structure

The Glue for Seamless Automation Engineering

Development of component modelling approach

- SUC as Template for 100% Component
- Components are defined by the Supported / RequieredRole Class AutomationComponent
- Internal Elements with defined Role Classes for all information classes, including the necessary interfaces

\sim
🕥 🔜 ComponentSystemUnitClassLib
(A) SUC ComponentTemplate { Class }
IE Skills { Class Role AutomationComponentSkill }
[IE] Sequenceing { Class Role AutomationComponentSequenceing }
III Interlocking { Class Role AutomationComponentIntercating }
🔍 🕕 ElectricalSymbol { Class Role ElectricalSymbol }
IE PneumaticSymbol { Class Role PneumaticSymbol
🕞 🔟 HydraulicSymbol { Class Role HydraulicSymbol }
IE DevicePicture { Class Role DevicePicture }
♥ IE Icon { Class Role Icon }
IE ComponentDocumentation { Class Role AutomationComponentDocumentation }
Es BehaviourModel { Class Role PLCopenModel }
IE FMUFMI { Class Role UserDefinedSimulation} odel }
✓ IE ColladaModel { Class Role AutomationComponentModelElement] }
🔍 🔃 JTData { Class Role JTData }
↓ IE KinematicModel { Class Role KinematicModel }
IE MechanicConnector { Class Role MechanicConnector }
IE FluidicConnector { Class Role FluidicConnector }
↓ IE LogicConnector { Class Role LogicConnector }
↓ IE ElectricConnector { Class Role ElectricConnector }
MutomationMLComponentRCL/AutomationComponent
Σ

Important support structure example

- Forerunner within the implementation of the component concept is Festo
 - At the moment Festo is able to provide Collada 1.4.0 representations for nearly all catalogue products (Collada 1.5.0 will be availabe soon)
 - Provides ColladaWebViewer and AutomationMLEditor Plugin
 - Intention: Provide a stable tool kit for evaluation of geometry and kinematic behavior of components BEFORE purchasing
- Enables a first step towards integrated component libraries and their use

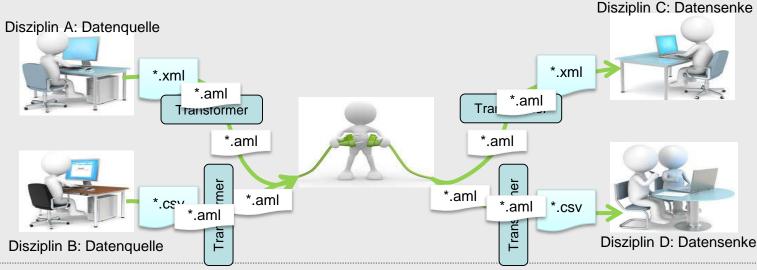
Important support structure example

<AutomationML/>

The Glue for Seamless Automation Engineering

First CADENAS based solutions available PARTdataManager 11.00 - PARTsolutions by CADENAS - NICHT ZUR GEWERBLICHEN NUTZUR

PARTdataManager 11.00 - PARTsolutions by CADENAS - NICHT ZUR		\23d-libs\festo\parts\e\epco\epco_asmtab.prj
Datei Export Ansicht Tabelle Konfigurator Extras Fenster		- 🙄 - 🔎 🔜 🥽 🔮 🤮 📑 (=) 💀 🖩 😭 ? 🍪 🖂
✓ ABC Suchbegriff(e) für Volltextsuche	G Suchen in Verzeichnis fixieren (- Norm -)	✓ nach = Teilefamilien und Einzelteilen ▼ Suche starten ▼
Assistent 😂 Teileauswahl 😵 Teileansicht	Bauteilvergleich 🔆 Cloud Navigator	Q Suchergebnisse
🕲 Eigenschaften der Regel	× 16	-50-3P-A-ST(0) Technische Angaben (3)
Eigenschaften	Bedingungen	
Name: TO_KS	Nur benutzen wenn gilt:	
Autom. Aufbau erlauben 🗸		
Exklusiv	Nur benutzen, wenn	
Positionierung	Alle folgenden Bauteile eingesetzt:	
Anfügeteil: Anfügepunkt:	 mindestens eines der Bauteile eingesetzt: 	
Führung DIM_AM		
cmmo_st_asmcfg DIM_D1_1 din_912 DIM_D1_2		
din_934 DIM_KF_1		
emms_st_ls DIM_KF_2		
emms_st_ss DIM_KK		
epco_dummy DIM_L4		
epco_k DIM_MM epco_z DIM_SW1		
nebm_e_q EAGF		
nebm_s1_g9_p1 EPCO_KS	Hinzufügen Löschen	
NUT		
	Folgende Regeln nicht benutzen,	
	wenn diese verwendet:	42/14
Translation: EPCODUMMY@HUBST 🗹 Frei		
Min: 0 Max: EPCODUMMY@HUB		7
Rotation: 0 Gree		
Min: Max:		20
Richtung umkehren		۲
Simulation	Hinzufügen	te ×
		Attribute
	nehmen Hin	zufügen Attribut Wert Einheit
Schaltein-/ausgang	Physical Limit (Line	
		Position Free 0
[mm] 12 16 19	*	Max. Acceleration 10000 mm/sec^2
B1 20 10 17		Max. Deceleration 10000 mm/sec^2
Neuberechnung 3D Geometrie a		Target distance EPCODUMMY@HU mm
		OK Abbrechen


State of applicability of AutomationML

The Glue for Seamless Automation Engineering

Frequently addressed issue: Is AutomationML mature enough to be applicable ?

- Simple answer: YES!
- More complex answer: There is a possible migration path from existing stable engineering chains towards AutomationML based ones!
 - Problems to be tackled: Convince the user to NOT change their known habit but improving their work.

Cooperations

- The AutomationML e.V. cooperates with different organizations for the purpose of harmonization of standards and the collaborative development of Best Practice
- Liaisons exist with
 - PLCopen
 - KHRONOS (COLLADA)
 - eCl@ss
 - ProSTEP iViP
 - OPC Foundation
 - IEC
 - FDT
 - VDMA
 - CADENAS

Cooperation with CADENAS

- Status: Liaison
- Technical objective:
 - Development of a production system component modelling methodology
 - Integration of engineering and purchase relevant information
 - Application of this methodology as export function from CADENAS product catalogs
 - Enhancement of CADENAS PARTsolution product line with AutomationML export
- Non-technical objectives:
 - Collaborative promotion / marketing
- Affected parts of AutomationML
 - Best Practice Recommendations Description of Automation Components (currently in development)

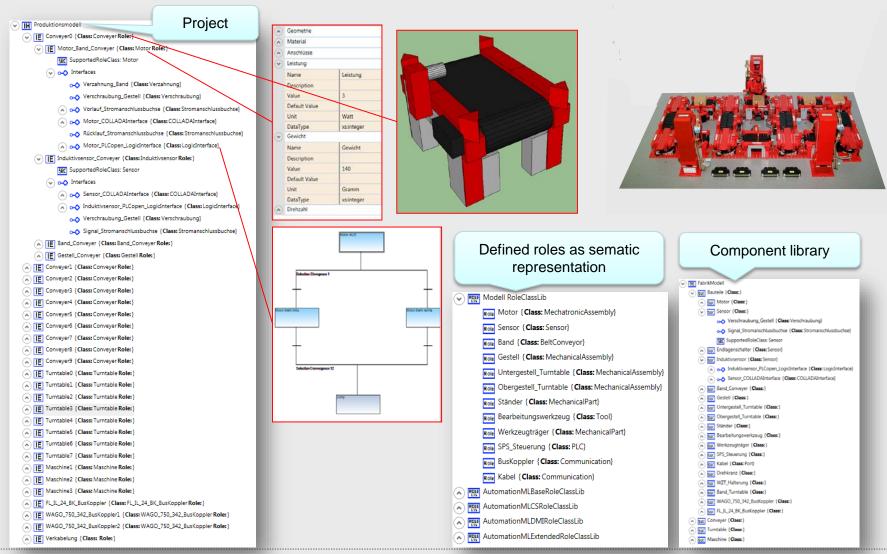
AutomationML information

The Glue for Seamless Automation Engineering

- What else can be found about AutomationML?
- AutomationML web page on www.automationml.org
 - Download area with all whitepapers, software, development examples, ...
 - → Research projects, tools, publications, ...
- AutomationML newsletter
 - Subscription possible on the web page www.automationml.org

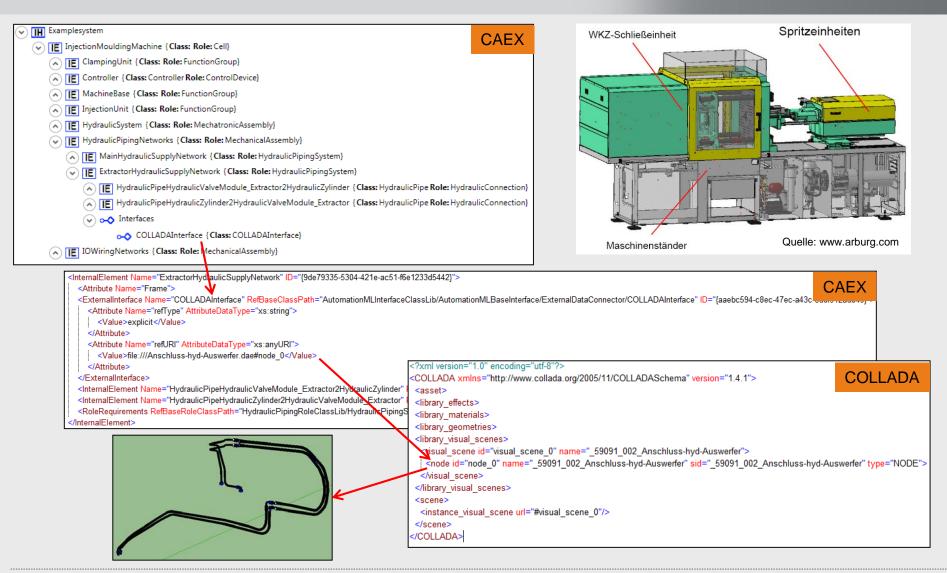
AutomationML in a Nutshell

Downloadable on the web page as well



Join AutomationML!

Eine wirklich gute Idee erkennt man daran, dass ihre Verwirklichung von vorne herein ausgeschlossen erscheint. Albert Einstein


Topology description with CAEX example

CADENAS Industry Forum

Geometry and kinematics AutomationML/> example

