

=====================================			SporePortAssist	
	Searched part			
			W	
			Search results	
	1	82.60%	HTW Berlin	
		V	sparepartassist/Wilo_Steuerungsmodul.obj	
	2	66.00%	HTW Berlin	
			Laber norekemp1000,01680- 211X600tsometrisch_62.abj	
BACK	3	65.14%	HTW Berlin	HOME

Research project

"Spare parts – we will find you!"

Prof. Dr.-Ing. Frank Neumann / 10.5.2023

Agenda

1 Introduction to the project

2 Project partner

3 We find spare parts!

4 Summary and outlook

1. Introduction to the project

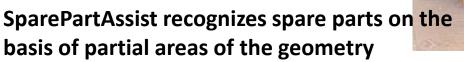
Prof. Dr.-Ing. Frank Neumann | SparePartAssist

Profile for the BMBF-funded research project SparePartAssist

• Duration: 1.6.2020 – 31.03.2023

 Funding program: KMU Innovativ of the BMBF

- *
- Bundesministerium für Bildung und Forschung


4 Project partners

Motivation for SparePartAssist

Challenges for service technicians in the field for manufacturing equipment, escalators or elevators ...:

- The article number of an urgently needed spare part cannot be determined on site.
- Plant documentation is either not available or not up to date.
- Component is built-in and difficult to access.
- Component to be replaced is worn out or partially destroyed.

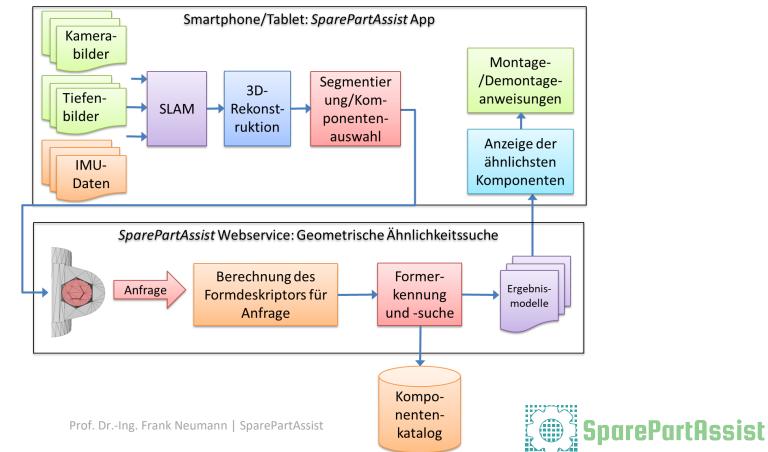
Context

eCatalog/CAFM

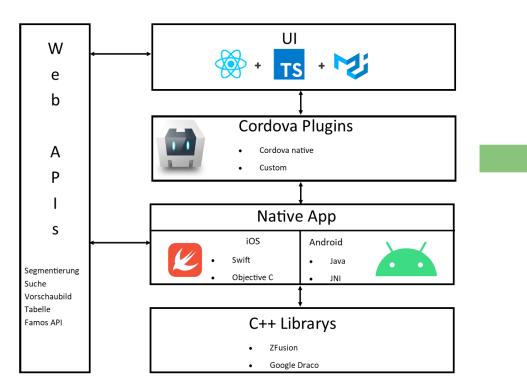
- Spare parts catalogs and assembly instructions including CAD data
- Inventory changes
- > 1 million components
- Calling CAFM for assembly/disassembly
- 6 instructions

Mobile devices

- **Object detection** in 1-2 minutes
- RGB and depth sensors from mobile devices


Acquisition conditions

- Occlusion (component is installed)
- Poor lighting
- **Dirty** surfaces
- Reflective surfaces
- Little textured



•

Workflow

Software Architecture

Cross-platform framework: Enables support for iOS and Android

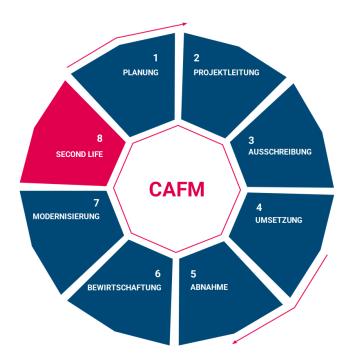
2. Project partner

Prof. Dr.-Ing. Frank Neumann | SparePartAssist

Project partner: Keßler Solutions

CAFM – Computer Aided Facility Management

• Computer aided facility management


CAFM – a holistic perspective

- Creates cost transparaency & generates savings
- Access to changing data
- Reduction of processing costs
- Standardization of process flows
- Provides conclusions and concrete recommendations for action
- Generation of site KPIs

10

Project partner: GFal e.V.

Association for the Promotion of Applied Computer Science

- Die GFal is a non-profit research institution in the field of applied computer science.
- As a private, modern research institute, GFal supports its partners in their innovations with industry-oriented, application-oriented research and development activities.

Project partner: HTW Berlin

HTW Berlin – University of Applied Sciences

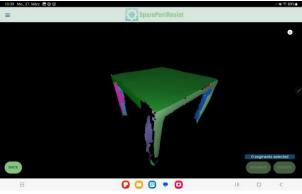
- Berlin's largest university of applied sciences
- 14,000 students
- 3,000 graduated per year
- 75 study programs
- 310 professors
- 9.5 million € third-party funding per year

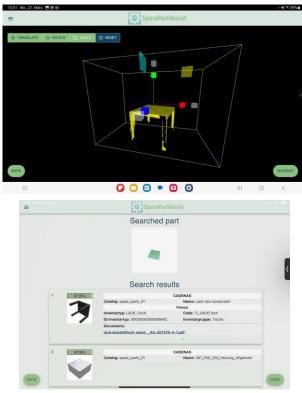
3. We find spare parts!

Integrated depth sensors

Initial idea of the project:

- Use of smartphones/tablets with integrierted depth sensor
- Available on Android e.g. Honor View 20, Samsung Note 10+
- Newly available at projet start LiDAR-Sensor from iPad and iPhone Pro

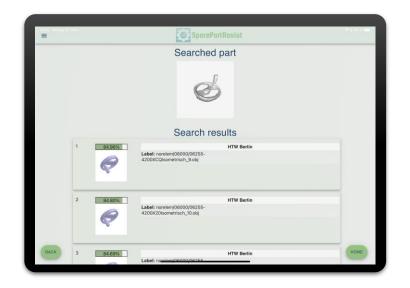

Android: iToF – Multipath Interferences Therefore, focus on LiDAR sensor of iPad and iPhone Pro


Prof. Dr.-Ing. Frank Neumann | SparePartAssist

LiDAR sensor for Ikea parts

Prof. Dr.-Ing. Frank Neumann | SparePartAssist

LiDAR sensor in the real laboratory boiler room WH G K 020



LiDAR sensor for handwheel

Results for LiDAR sensor

Identified strength

- Sensor resolution sufficient for larger objects (dimensions > 5 cm)
- Sensor results largely independent of colors and textures here only difficulties with highly reflective surfaces.
- Robust tracking results trajectory stable

Weaknesses identified

- Resolution of 256x192 not sufficient for scanning smaller components
- Strong smoothing and rounding of edges
- No access to raw data of the sensor possible
- Geometric shape recognition difficult for scan meshes generated with LiDAR sensor
- Hereby unclear search results for algorithms optimized for CAD models.

External depth sensors

Since there is currently no suitable integrated depth sensor available for the parts spectrum:

- Use of external depth sensors
- Holder for attaching the sensor to the smartphone/tablet
- Calibration necessray

External depth sensors

ToF

 Unfortunately, no dToF based camera available – Intel has discontinued L515.

Stereo camera

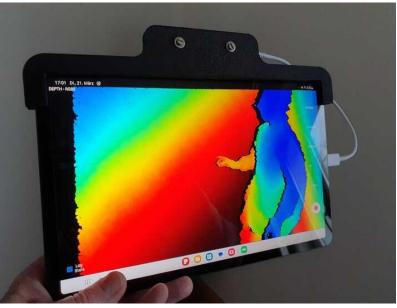
- Problem is the noise of the depth reconstruction
- Prototypically Intel RealSense D415 used, as integration into Android app can be implemented without risk

Structured Light

- Structure Sensor Pro from Occipital
 very expensive (875 US \$)
- Much cheaper solution from Orbbec: Astra Embedded S for 170 US \$, evaluated and found to be good, integration in Android app pending

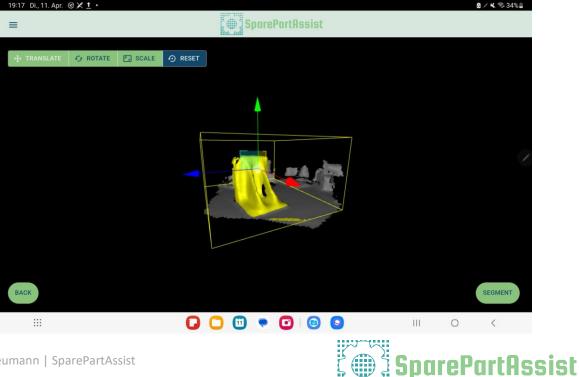
Results for Intel RealSense D415

Holder for Samsung Galaxy Tab S8 designed and printed



Ergebnisse für Intel RealSense D415

Holder for Samsung Galaxy Tab S8 mounted and evaluated



Prof. Dr.-Ing. Frank Neumann | SparePartAssist

Ergebnisse für Intel RealSense D415

Integration in SparePartAssist App

4. Summary and outlook

Summary

- SparePartAssist has implemented an innovative method for spare parts search in software, demonstrated its feasability and made a new category of 3D-based spare parts search possible beyound Google Lens & Co.
- Integrierted depth sensors do not currently meet the performance requirements of 3D-based search.
- External depth sensors provide a viable bridge technology until better int. Sensors are available.
- Machine-learned search techniques offer significant advantages over classical approaches, especially for noisy and lowresolution data.

Achievement of goals

eCatalog/CAFM

- Spare parts catalogs and assembly instructions including
 CAD data
- Inventory changes
- ✓ > 1 million components
- Calling CAFM for assembly/disassembly

26 instructions

Mobile devices

- **Object detection** in 1-2 minutes
- RGB and depth sensors from mobile devices

Acquisition conditions

- Occlusion (component is installed)
- Poor lighting
- Dirty surfaces
- Reflective surfaces
- Little textured

Outlook

Next steps:

- Completion prototype with external depth sensor (Intel RealSense D415) on Android
- Extension with Structured-Light Sensor Orbbec Astra Embedded S
- Evaluation of the solution in customer scenarios

New trends:

 New integrated depth sensors in the pipeline for iPhone und iPad Pro as well as Google Pixel 8

Research activities:

- Fusion of 2D and 3D data for object recognition
- Machine-learned features for geometric descriptors

Thank you for your attention!

