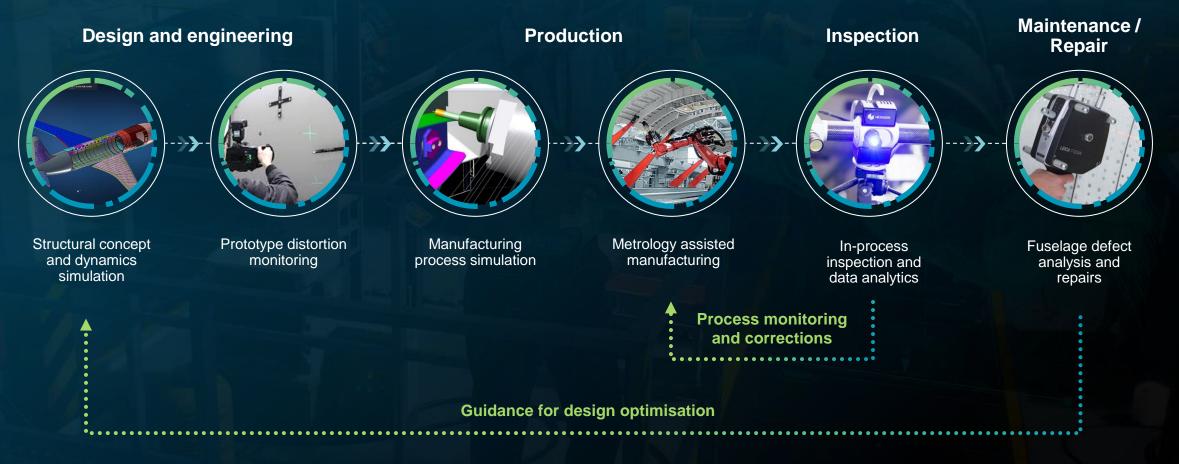
confidential

Close the Gap Between Design and Production: Predict Cycle Time by AI/ML

Industry Forum 2023

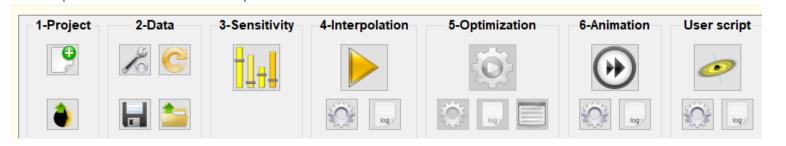
-010

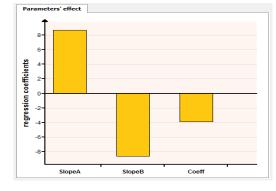
Cornelia Thieme Manager Presales DACH Hexagon

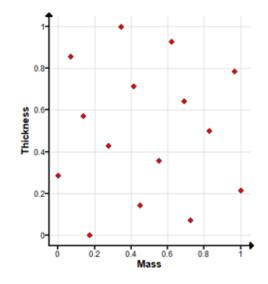

Hexagon: Innovation in our DNA

We are a global leader in sensor, software and autonomous solutions committed to empowering a sustainable autonomous future.

Hexagon: Putting Data to Work from Concept to Operation


Aerospace example




ODYSSEE Machine Learning

- From available analysis, test results or measurements, predict responses for further data points
- ODYSSEE delivers the response in seconds
- Predict results values, curves and animations
- Improve parameters of manufacturing processes
- Input: csv files
- Can use images or step files instead of parameters
- Easy-to-use GUI
- Scripting possible
- Create and improve DOE
- Plot tool for correlation, PCA, heat map, etc.
- Optimization

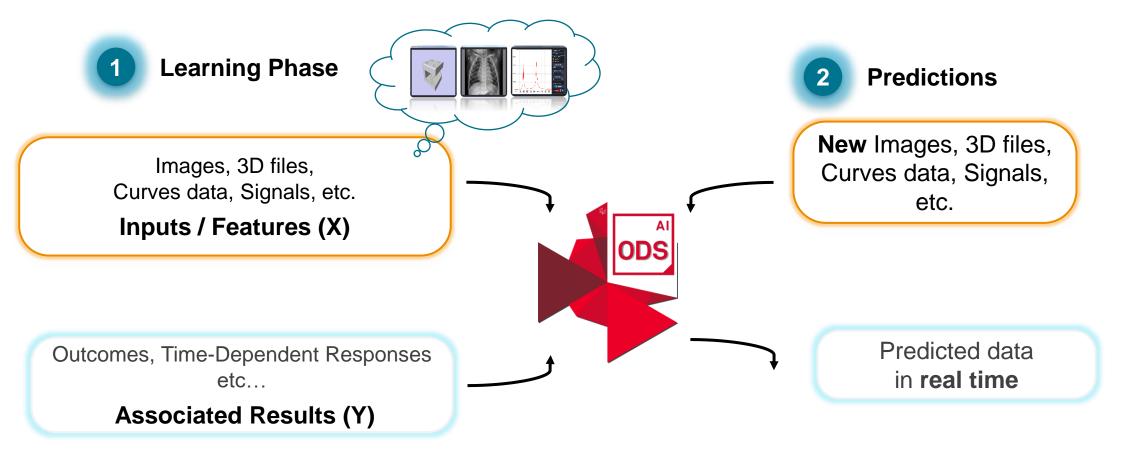
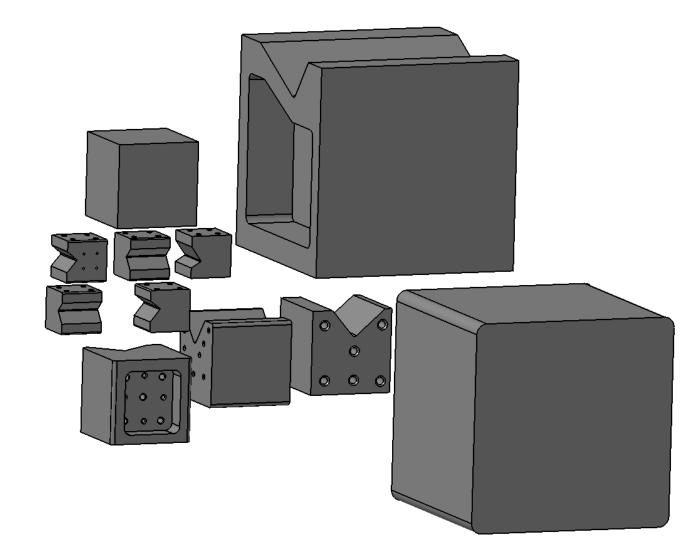

File Export Tools Preferences Help

Image and Step File Based Machine Learning

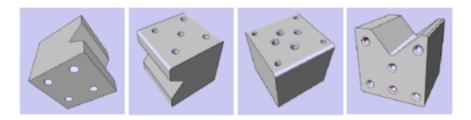
Use of Past Experience to Predict New Outcomes

CNC QUOTE allows to predict a machining time using an existing learning database composed of :


- 3D models (File(step) type) where Complex indicators (λ) are calculated automatically
- Material tag (Tags type)
- Tapped holes number estimation per 3D part analyzed
- percent (%) of 3D part with a surface roughness Ra<=0.8
- percent (%) of 3D part with a surface roughness Ra at 1.6
- percent (%) of 3D part with a great accuracy machining (small tolerance)
- And the associated machining time.

Tapped holes number	0	1	2	3	4	5	10		15	20	25	30
Materials			% Ra	<=0.8			% Ra 1	.6	25%	6 Roug	gh effe	ect = R
Alu2017			0				0					
S235										1		
2024T351			2	5	_	25						- !
Titane			5	0			50					WT /
			7	5			75			E	-	
			10	00			100					

^{75%} high precision machining


Some of the geometries, available as 3d step files

Eye MANAGER - 2023.1						- 0	×				
				A-Eye_Manager		? ×					
CUSTOMIZATI	ON CONFIGURATION			File (Step) type configuration setting							
				Extract indicators from this type of file using a Qua							
				Custom		~					
					Select the Quasar/Python script that will be executed during file selection:						
				ImportCAD.qsr							
				Enter the output filename defined in the Quasar s	script (see saveCsv() function):						
				dataTemp.csv			Define a				
Desumentation				Define the names for the extracted indicators:			customization:				
Select a help document Select a help document				Column name	Column number range		Define the				
stomizationsON/CNC QUOTE/Documentation/ODYSSEE A-Eye - Example_CNC_QUOTE.pdf				Edgeloop number	1	• •	parameter				
Define (X)	efine (X)			Envelope Surface	1	<u>^</u> •	format as files				
X database name: Descriptive variables			1	Complexity index	1	<u>^</u> •	images (not in				
Define input types and names to load in X:		-					this case), tag				
Name	Туре	Settings			0		or values				
Step	File (STEP)	~ 0 <	•				 Define how to 				
Materials	Tags	~ O	•								
Hole tapped number	Values	~	•				interpret the				
%part with Ra0.8	Values	~	•				step file				
%part with Ra1.6	Values	~			Apply						
% part Very high precision machining	Values	~	•								
Define (V)											
Define (Y)											
Y database name: Results											
Define input types and names to load in V·											

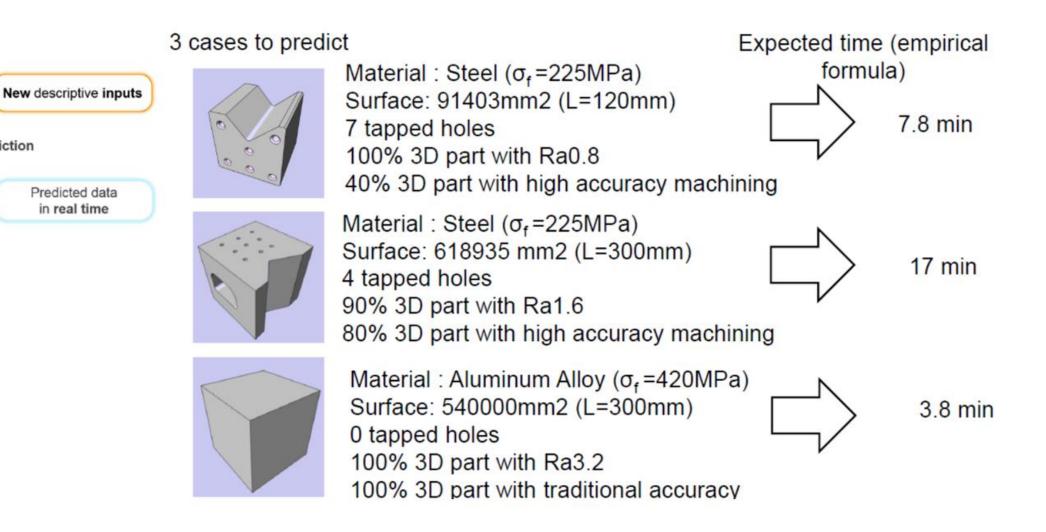
47 cases in database

CASE	Step	Materials	Number of Tapped Holes	%part wth Ra0.8	%part wth Ra1.6	%part very high precision machining	Machining time (r
CASE 1. case1	(3D)	AlloyAlu2024T351_430MPa	4	70	10	10	2.21
CASE 2. case2	(3D)	SteelS235_360MPa	6	20	80	20	1.99
CASE 3. case3	(3D)	Alu2027_225MPa	1	20	20	90	3.63
CASE 4. case4	(3D)	AlloyAlu2024T351_430MPa	5	30	40	30	4.99
CASE 5. case5	(3D)	SteelS235_360MPa	7	80	20	20	5.69
CASE 6. case6	(3D)	SteelS235_360MPa	6	10	60	90	6.57
CASE 7. case7	(3D)	SteelS235_360MPa	10	50	50	40	5.33
CASE 8. case8	(3D)	Alu2027_225MPa	9	80	10	60	3.51
CASE 9. case9	(3D)	AlloyAlu2024T351_430MPa	1	0	40	20	4.16
				Х			Y

Note: The X database is constituted of: 3D file, material tag, number of tapped holes, % part at Ra0.8, % part at Ra1.6, % part at high precision machining.

A-Eye App - 2023.1 - CNC QUOTE - P	rojectTest_CNCQUOTE			_	o ×
Project Settings Help		AI			
	\$			CNC QUOTE	ODS
Learning	Prediction	Base Viewer			

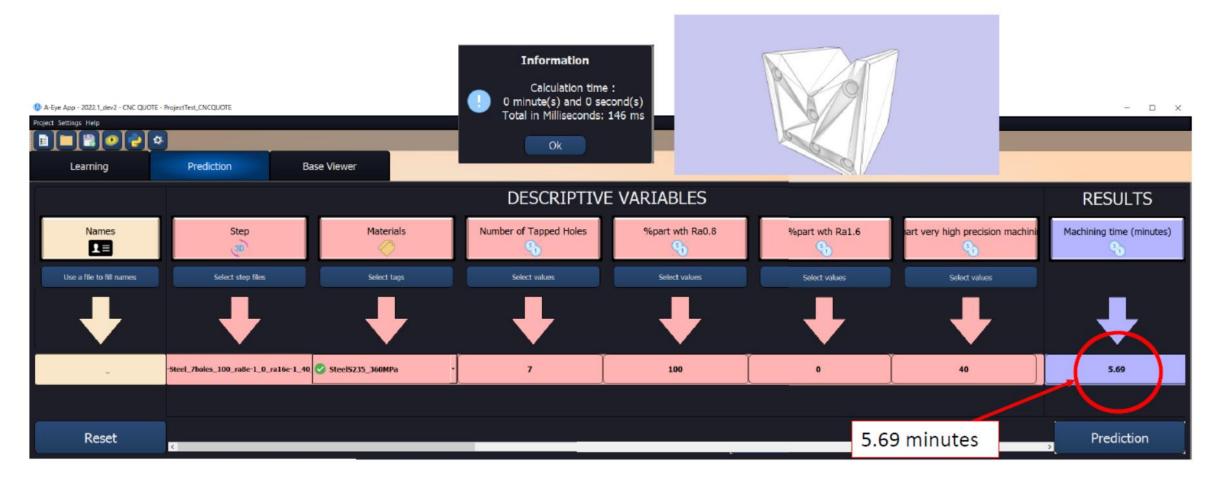
Delete selected case(s)


Nam	ne Edgeloop number	r Envelope Surface	e Complexity index	Materials:Alu2027_225MPa	Materials:SteelS235_360MPa	Materials: AlloyAlu2024T351_430	Number of Tapped Hole	es %part with Ra0.8	%part with Ra1.6	%part very high precision machining	Machining time (minutes)
1 case	1 34	23500	0.293	0	0	1	4	70	10	10	2.21
2 case	2 38	23300	0.295	0	1	0	6	20	80	20	1.99
3 case	3 39	24700	0.537	1	0	0	1	20	20	90	3.63
4 case	4 38	22700	0.596	0	0	1	5	30	40	30	4.99
5 case	5 59	26200	0.508	0	1	0	7	80	20	20	5.69
6 case	5 44	22700	0.586	0	1	0	6	10	60	90	6.57
7 case	7 89	27000	0.436	0	1	0	10	50	50	40	5.33
8 case	3 98	25000	0.712	1	0	0	9	80	10	60	3.51
9 case	9 18	84900	0.744	0	0	1	1	0	40	20	4.16
10 case1	1 68	95300	0.444	0	1	0	8	0	100	70	14.84
11 case1	2 42	93300	0.518	1	0	0	3	80	0	30	4.44
12 case1	3 50	92100	0.687	1	0	0	0	60	10	50	2.1
13 case1	4 68	97500	0.529	0	0	1	6	0	100	30	8.34
14 case1	5 60	93900	0.79	0	1	0	3	10	80	0	6.2
15 case1	6 90	86100	0.655	0	1	0	8	10	40	20	6.13
16 case1	7 96	95800	0.665	1	0	0	4	20	80	10	3.01
17 case1	8 14	89200	0.824	0	1	0	1	30	30	70	4.08
18 case1	9 78	112000	0.762	1 🔺	0	0	7	60	20	0	4.27
19 case2	0 78	93700	0.626	0	1	0	10	20	60	10	7.53

Display mode

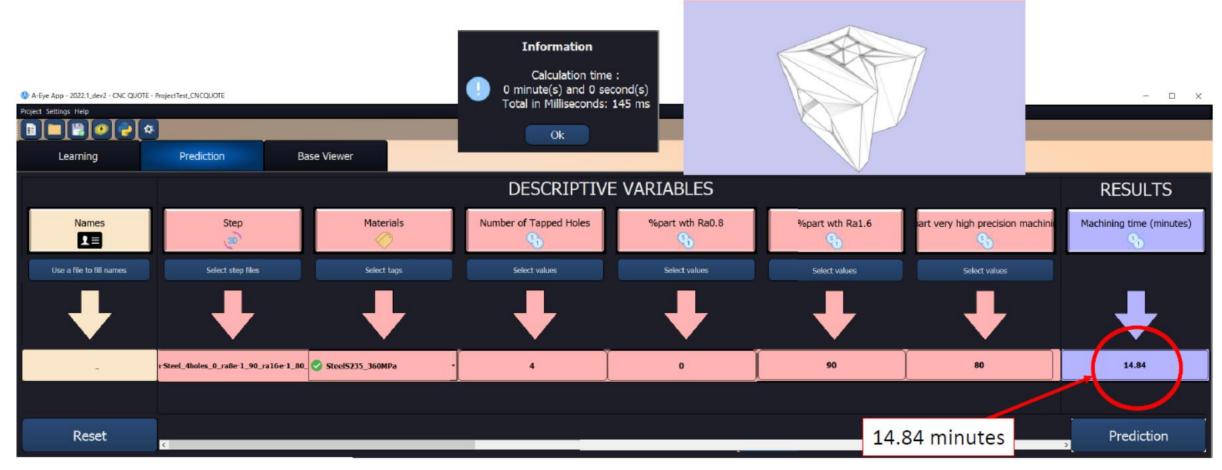
Odyssee transforms step files, images and tags to a matrix

Import database

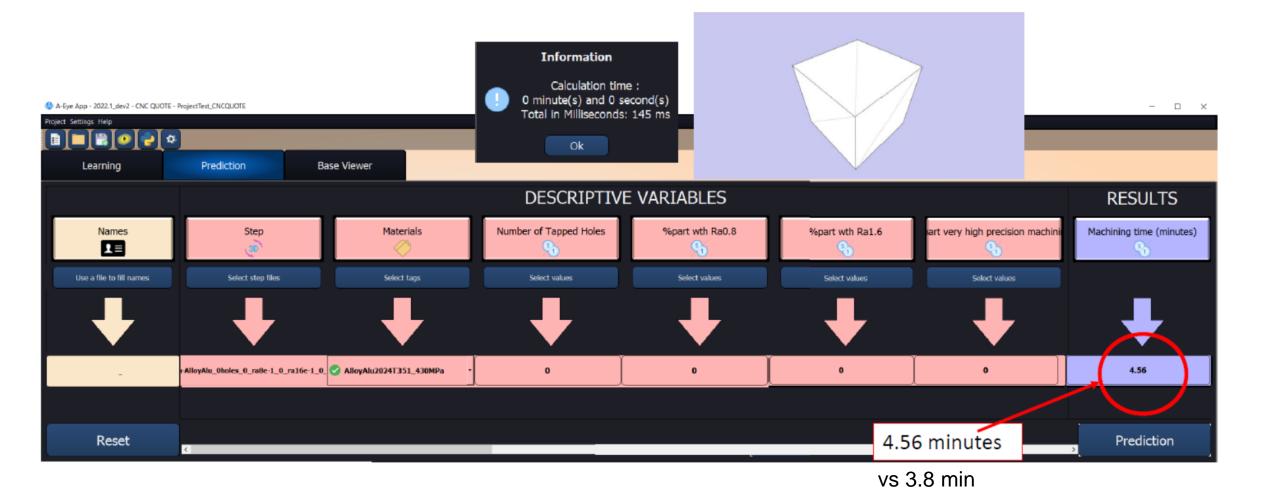


hexagon.com

11


ODS

Prediction

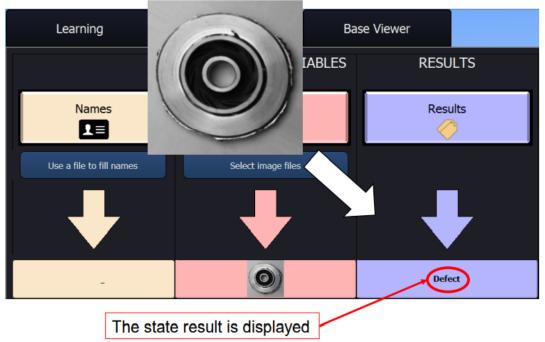

vs 7.8 min

Real-Time Product Quality Inspection

Classify "valid" or "defect"

Example of valid parts:

Example of defect parts:

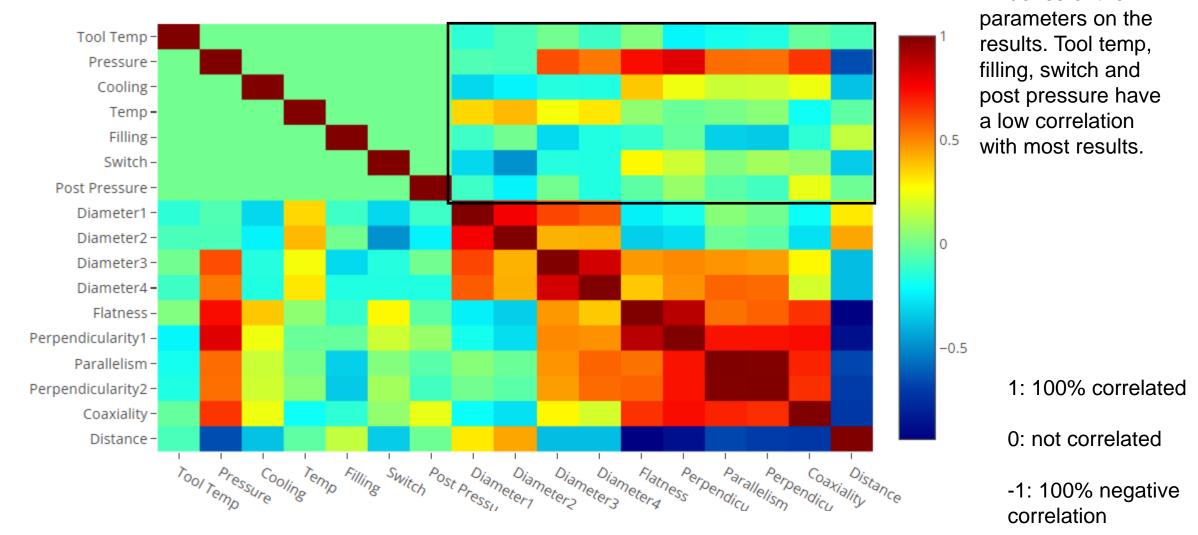


 \rightarrow

Optimize Manufacturing Process: Minimize Deviations in Injection Molding

Volume Graphics

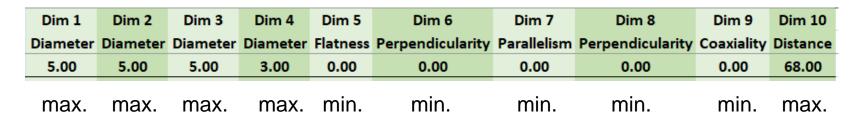
Color-coded visualization of deviations of the manufactured part from the target

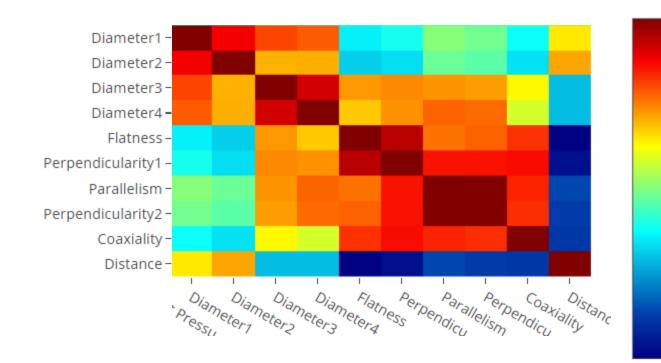

Find optimum values of the process parameters (blue) to reach optimum measurement results (green).

Ideally, these parameters are later used in the injection molding process and then get comparable measurement results.

Variable 1:	Variable 2:	Variable 3:	Variable 4:	Variable 5:	Variable 6:	Variable 7:	Dim 1	Dim 2	Dim 3	Dim 4	Dim 5	Dim 6	Dim 7	Dim 8	Dim 9	Dim 10
Tool Temp	Pressure	Cooling	Temp	Filling	Switch	Post Pressure	Diameter	Diameter	Diameter	Diameter	Flatness	Perpendicularity	Parallelism	Perpendicularity	Coaxiality	Distance
°C	Normiert	s	°C	s	%	Normiert	5.00	5.00	5.00	3.00	0.00	0.00	0.00	0.00	0.00	68.00
20	-1	15	230	0.3	96	-1	4.90	4.90	4.90	2.89	0.12	0.05	0.54	0.26	1.94	67.80
20	-1	25	230	0.7	100	1	4.88	4.88	4.88	2.88	0.44	0.52	0.39	0.19	4.28	67.15
20	1	15	270	0.3	100	1	4.90	4.89	4.92	2.90	0.59	0.93	0.90	0.45	3.93	66.86
20	1	25	270	0.7	96	-1	4.90	4.90	4.91	2.90	0.60	0.90	0.78	0.38	2.85	67.02
60	-1	15	270	0.7	96	1	4.90	4.90	4.90	2.89	0.07	0.08	0.32	0.15	1.08	67.72
60	-1	25	270	0.3	100	-1	4.89	4.89	4.90	2.89	0.60	0.46	0.81	0.45	2.30	66.74
60	1	15	230	0.7	100	-1	4.89	4.89	4.90	2.89	0.49	0.55	0.44	0.24	3.80	67.13
60	1	25	230	0.3	96	1	4.89	4.89	4.91	2.89	0.60	0.72	0.79	0.38	7.00	66.91
20	-1	20	230	0.5	98	0	4.88	4.88	4.88	2.88	0.18	0.27	0.22	0.12	0.30	67.66
60	-1	20	230	0.5	98	0	4.90	4.89	4.90	2.89	0.16	0.05	0.18	0.08	0.78	67.60
20	1	20	230	0.5	98	0	4.90	4.89	4.92	2.90	0.59	0.93	0.90	0.45	3.93	66.86
60	1	20	230	0.5	98	0	4.89	4.89	4.91	2.89	0.56	0.63	0.62	0.30	3.01	67.06
20	-1	20	270	0.5	98	0	4.91	4.90	4.91	2.89	0.14	0.11	0.36	0.18	0.94	67.81
60	-1	20	270	0.5	98	0	4.90	4.89	4.90	2.89	0.36	0.08	0.15	0.08	1.36	67.36
20	1	20	270	0.5	98	0	4.89	4.89	4.90	2.89	0.49	0.55	0.44	0.24	3.80	67.13
60	1	20	270	0.5	98	0	4.89	4.89	4.91	2.89	0.52	0.54	0.42	0.23	2.06	67.19
40	0	20	230	0.5	98	0	4.90	4.89	4.91	2.89	0.47	0.39	0.22	0.11	1.66	67.38
40	0	20	270	0.5	98	0	4.90	4.90	4.91	2.89	0.45	0.34	0.16	0.08	1.43	67.45
40	-1	20	250	0.5	98	0	4.90	4.90	4.90	2.89	0.12	0.04	0.38	0.19	1.03	67.80
40	1	20	250	0.5	98	0	4.90	4.89	4.91	2.89	0.60	0.84	0.83	0.40	6.89	66.92
20	0	20	250	0.5	98	0	4.90	4.90	4.91	2.89	0.52	0.55	0.32	0.16	2.05	67.34
60	0	20	250	0.5	98	0	4.89	4.89	4.90	2.89	0.42	0.26	0.20	0.11	1.69	67.35
40	0	20	250	0.5	98	0	4.90	4.90	4.90	2.89	0.12	0.05	0.54	0.26	1.94	67.80

Optimize Manufacturing Process: Correlation Plot





Influence of the

Optimize Manufacturing Process: Optimization – Objective

Try to get close to the target values; or maximize / minimize values. Both methods perform very similar.

Tradeoff:

In Flatness, Perpendicularity, Parallelism, Coaxiality increase with Diameter 3 and 4 (go in the same direction)

But Flatness, Perpendicularity, Parallelism,

Coaxiality should be minimized, while Diameter 3 and 4 should be maximized

-0.5

0

Optimize Manufacturing Process: Find the Best Interpolation Method

Omitted some data points (7, 23) from the learning base and predicted them

A script runs all methods automatically and finds the one with the best accuracy. Here:

The best method found for Dataset_1 CLUSTER_1 is: InvD 3neighbours power=1.5, with a L2norm= 0.154009.

Solvers configuration		>	×	_	
Dataset_1	Solver :	InvD ~	User script	🐹 Lunar ? ×	<i>.</i>
	Neighbours : Power :	POD FFT Clustering Kriging RBF ARBF InvD Regression SVM Custom	configure Display log file	/UserScriptTabOption/UserScript_Compare_Interpolation_methods.qsr	
do training step : auto (no)	~	▶ Run OK Cancel		add	

Optimize Manufacturing Process: Reduce Parameters

Pressure	Cooling	Temp	Pressure	Cooling	Temp										
-1	15	230	-1	l 15	230	4.9	4.9	4.9	2.89	0.12	0.05	0.54	0.26	1.94	67.8
-1	25	230	-1	L 25	230	4.88	4.88	4.88	2.88	0.44	0.52	0.39	0.19	4.28	67.15
1	15	270	1	l 15	270	4.9	4.89	4.92	2.9	0.59	0.93	0.9	0.45	3.93	66.86
1	25	270	1	L 25	270	4.9	4.9	4.91	2.9	0.6	0.9	0.78	0.38	2.85	67.02
-1	15	270	-1	l 15	270	4.9	4.9	4.9	2.89	0.07	0.08	0.32	0.15	1.08	67.72
-1	25	270	-1	L 25	270	4.89	4.89	4.9	2.89	0.6	0.46	0.81	0.45	2.3	66.74
1	15	230	1	l 15	230	4.89	4.89	4.9	2.89	0.49	0.55	0.44	0.24	3.8	67.13
1	25	230	1	L 25	230	4.89	4.89	4.91	2.89	0.6	0.72	0.79	0.38	7	66.91
-1	20	230	-1	L 20	230	4.89	4.885	4.89	2.885	0.17	0.16	0.2	0.1	0.54	67.63
-1	20	230		L 20	230	4.895	4.89	4.915	2.895	0.575	0.78	0.76	0.375	3.47	66.96
1	20	230	-1	L 20	270	4.905	4.895	4.905	2.89	0.25	0.095	0.255	0.13	1.15	67.585
1	20	230	1	L 20	270	4.89	4.89	4.905	2.89	0.505	0.545	0.43	0.235	2.93	67.16
-1) 20	230	4.9	4.89	4.91	2.89	0.47	0.39	0.22	0.11	1.66	67.38
-1) 20	270	4.9	4.9	4.91	2.89	0.45	0.34	0.16	0.08	1.43	67.45
1	20		-1	L 20	250	4.9	4.9	4.9	2.89	0.12	0.04	0.38	0.19	1.03	67.8
1			1	L 20	250	4.9	4.89	4.91	2.89	0.6	0.84	0.83	0.4	6.89	66.92
0) 20	250	4.896667	4.896667	4.903333	2.89	0.353333	0.286667	0.353333	0.176667	1.893333	67.49667
0															
-1															
1	20														

Kept only the 3 parametes with the highest influence.

Then there are duplicate parameter sets with different results for same parameter combination. These results are averaged.

hexagon.com

Optimize Manufacturing Process: Optimization Setup

Optimization options	os Optimization options											
1 - Configure parameters	2 - Define optimiza	tion problem	3 - Configure o	optimizer								
Configure parameters	0											
51	Select starting point : center of DOE Select and configure parameters :											
🗹 Name 🛛 Start	min	max	Туре	Variation	reset all							
Pressure 0	-1	1	Integer $ \smallsetminus $	0.002	reset							
Cooling 20	15	25	Real \sim	0.01	reset							
✓ Temp 250	230	270	Real \sim	0.04	reset							

os Optimization op	tions			×
1 - Configure paramet	ers	2 - De	fine optimization problem 3 - Configure optimizer	
Automatic configur Objectives ()	ation		Personnal user script	
 Dataset_1 target 	+ × × × × × × × × ×	~	Dataset_1 target name : target weight effect : 1 Select target type : maximize value ~ maximize Yn(t) ~ at cursor position : 9	

os Optimization options					×
1 - Configure parameters	2 - Define optimization proble	em	3 - Configure optimizer		
Configure optimizer					
Optimization algorithm :		Loca	l + Constraints+MultiObj (N	LPJOB)	~
Minimize :		weig	phted sum of objectives		\sim
Number of iterations :		99			•
Max Number of call :		999			•
Stop criterion :		0.00	0000001		▲ ▼

Optimize Manufacturing Process: Optimization Result

Questions?

